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1. Introduction

The growth of wireless technology, the concern towards its security attracted greatly attention [1], [2].

Uncontrolled electromagnetic wave from a device might degrade the other to another device performance. This 

uncontrolled electromagnetic wave defines as electromagnetic interference or unwanted signal. Electromagnetic 

interference may cause failure of electronic devices in susceptible environment. Therefore, many researchers have 

study on the frequency selective surface (FSS) due to its widespread applications in the fields of spatial filter, radar, and 

microwave absorber [3]– [5]. Therefore, many research of FSS are listed in the literature for shielding application. The 

band stop FSS (BSFSS) can act as a shielding wall to save the wireless devices from getting damaged from the 

interferences [6]. In FSS design, there are few factor which effects the frequency response such as substrate thickness, 

substrate dielectric, its geometry, the spacing between the elements, slot size, and etc. [7] – [9]. 

Abstract: This paper presents the study of 5.8 GHz frequency selective surface (FSS) acts as a band stop to 

eliminate unwanted radiation signal at 5.8GHz. The FSS was designed using computer simulation technology 

(CST) Microwave Studio software. The paper shows the comparison of square loop, octagon loop and hexagon 

loop of Band stop FSS (BSFSS) performance at 5.8 GHz. Besides, the BSFSS design using four different type of 

dielectric substrate such as FR-4, TLY-5, Roger RT5870 and Roger RT5880 were compared. The results obviously 

show that the Rogers RY5880 has the attenuation -44.72 dB.  The fabricated FSS were measured by using free 

space technique with two horn antennas connected to performance network analyzer (PNA). The measured and 

simulated results were compared. The results show that the square loop FSS structure have the better attenuation -

26.76 dB (simulated) and -38.34 dB (measured) at 5.8 GHz. 
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In this paper, square loop, octagon loop and hexagon loop of Band stop FSS (BSFSS) performance at 5.8 GHz 

were investigated. The performance of BSFSS with various dielectric substrate were compared. The CST MW studio is 

used as a simulation tool to design and simulated the return loss (S11) and insertion loss (S21) of the BSFSS. 

 

2. Experimental 

The Fig, 1 and Fig. 2 show the fabricated square and octagon design FSS.  The FSS structure measured by using A 

pair of horn antennas (Model: A-INFO LB-187-10, 3.95 GHz-5.85 GHz). One of the horn antenna acts as a transmitter 

and another one acts as receiver as shown in Fig. 3. The transmitter horn antenna transmits the signal propagate through 

the FSS structure and receiver horn antenna receive the signal pass through the FSS. For free space far field 

measurement, the distance between the two horn antennas were 335 mm and the FSS will be placed at the middle of 

two horn antennas shown in Fig. 4. The measured results (S-parameter) of MUTs were shown in the Network Analyzer. 

 

 
 

Fig. 1 - Completed square design FSS structure (MUT) 
 

 
 

Fig. 2 - Completed octagon design FSS structure (MUT) 
 

 
 

Fig. 3 - Horn antennas (Model: A-INFO LB-187-10, 3.95 -5.85 GHz) 
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Fig. 4 - Measurement set-up with square array FSS structure. 
 

The free space technique is contact-free, less restrictive and non-destructive on MUT (Material Under Test) 

thickness or even shape, as long as the probing beam can be guaranteed to pass through a uniform thickness of 

homogenous MUT. Moreover, as long as the latter condition can be met, it is also suitable for the non-solid dielectric 

material characterization such as liquids or powder material which cannot maintain the uniform thickness condition 

without the addition of a container and are the primary focus of this work. For the free space technique, the MUT does 

not have to match the waveguide cross section, easier to guarantee uniform sample distribution, contained appropriately 

and can measured liquid. 

The inaccuracies in dielectric measurements using free space methods are mainly due to the diffraction effects 

from the edge of the sample and signal leakage from the whole test environment, if not taken in an isolated 

environment, spurious signal interference. However, the standing waves in the test environment between the antennas 

and the multiple surfaces of the MUT and which cannot be completely calibrated out. Free space measurement is 

consisting of two horn antennas, one acts as transmitter and another acts as receiver. After that, the horn antennas are 

connected to the network analyzer. The VNA must be calibrated before starting the measurement. Then, put the MUT 

between the middle of the two horn antennas. After the measurement setup, observe the S-parameters with MUT and 

without MUT [10]. Fig. 5 shows the Free space measurement setup. 

 

 
 

Fig. 5 - Free space measurement setup 
 

3. Results and Discussions 

 

3.1 Different Design Comparison 

Fig. 6 and Fig. 7 show the Octagon and Hexagon design of FSS structure. Table 1 shows the shape of design 

effects the S-parameter results. From the observation, square design of FSS structure has better result of S11 and S21 

compare to hexagon and octagon design. At 5.8 GHz, the S11 value of square design is approximate to 0 dB, it means 

the return loss is high. The smaller of S21 value, the lower absorptivity at receiver and can act as a good attenuator. 
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Therefore, the square design is the highest attenuation compare to hexagon and octagon design. Octagon has the second 

best performance and continues by hexagon among the three different design. 

 

 
 

Fig. 6 - Octagon design of FSS 
 

 
 

Fig. 7 - Hexagon design of FSS 
 

Table 1 - S-Parameter results of FSS with different design 

 

Type of 

FSS 

Frequency 

(GHz) 
S11 (dB) S21 (dB) 

Hexagon 5.80 -0.66 -23.25 

Octagon 5.80 -0.582 -24.46 

Square 5.80 -0.44 -26.76 

 

3.2 Square Loop FSS Parametric Study 

In this section, the comparison of various length, x and width, w effect the frequency response and S-parameters of 

BSFSS. A FR-4 substrate with thickness 1.6 mm and dielectric constant 4.4 was used design the BSFSS. The parameter 

of square design FSS structure shown in Figure 8. Table 2 shows length, x effects the frequency and S-parameters. 

Figure 9 (a) and (b) show that the length, x increases, the frequency shift to lower frequency. From the results show that 

the S11 and S21 values are slightly changed from -1.00 dB to -0.41 dB and -20 dB and -28 dB, respectively. This shows 

that the gap between copper and substrate affect the S-parameter results of FSS structure. 

 

 
 

Fig. 8 - Parameter of square loop FSS 
 

 

 

x 

w 

7.44 mm 

8.32 mm 

7.02 mm 

5.79 mm 
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(a) 

 
(b) 

 

Fig. 9 - S-parameter result of FSS square loop with various length, x; (a) S11 and (b) S21. 
 

Table 2 - Parameter, x effects the result of FSS structure. 

 

Length, x 

(mm) 

Frequency 

(GHZ) 
S11 (dB) S21 (dB) 

12.2 6.57 -1.00 -20.21 

13.2 6.19 -0.81 -21.91 

14.2 5.80 -0.44 -26.76 

15.2 5.45 -0.37 -28.12 

16.2 5.11 -0.41 -27.17 

 

Table 3 shows the parameter, w effects the frequency and S-parameter results. Figure 10 (a) and (b) show the S-

parameter shift to higher frequency when increasing the width, w of the square loop FSS. From the observation, when 

the width, w increases, the frequency will be increases. The S11 values change variation between -0.40 dB and -0.65 dB 

and the S21 values change variation between -25 dB and -27 dB. This shows that the gap between copper and substrate 

affects the S-parameter results of FSS structure. 

 

 
(a) 
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(b) 

 

Fig. 10 - S-parameter result of FSS square loop with various width, w; (a) S11 and (b) S21. 
 

Table 3 - Parameter, w effects the result of FSS structure. 

 
Width, w 

(mm) 

Frequency 

(GHZ) 

S11 (dB) S21 (dB) 

1.0 4.99 -0.52 -25.15 

1.5 5.40 -0.47 -26.09 

2.0 5.80 -0.44 -26.76 

2.5 6.20 -0.63 -24.00 

3.0 6.52 -0.53 -25.56 

 

3.3 Simulation Results of Array Square Loop FSS 

The number of loop of FSS structure can increased and the number of loop does not affect the S-parameter result 

or performance. The design is depending on structure’s size, shape of design and substrate of FSS. After attach the FSS 

structure, the result of S21 become smaller, this is because the FSS structure has tries to eliminate the frequency at 5.8 

GHz. The absorptivity of square design FSS structure higher than octagon FSS structure since the S21 value of square 

design FSS structure smaller than octagon FSS structure. The obtained results from the simulation shows that the array 

of square loop will not affect the S-parameter results. All the S-parameter results are shown in Figure 11 and Table 4. 

From the results, obviously shows the characteristic of the square loop FSS is acts as a bandstop filter. The S11 and S21 

values remains at -0.44 dB and -26.77 dB, respectively. 

 

 
 

Fig. 11 - S-parameter Results of Array Square Loop FSS 
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Table 4 - Comparison of S-parameter results of FSS with various number of square loop. 

 

Parameter S11 (dB) S21 (dB) 

1 square loop -0.44 -26.76 

2 square loops -0.44 -26.77 

4 square loops -0.44 -26.77 

9 square loops -0.44 -26.77 

16 square loops -0.44 -26.77 

24 square loops -0.44 -26.77 

 

3.4 Simulation Results of FSS with Various Dielectric Substrate 

Table 5 shows different of dielectric substrate effect the S-parameter results. From the observation, S11 value of 

Rogers RT5880 is nearest to 0 and means that the return loss is the smallest whereas FR-4 has largest return loss among 

the dielectric substrates. S21 value of Rogers RT5880 is the smallest and means that its absorptivity is the highest and 

FR-4’s absorptivity is the smallest among the all. This is because Rogers RT5880 has a smaller dielectric constant and 

thickness, it is 2.2 and 0.787 mm respectively. From the results, we can conclude that the dielectric substrate with 

smaller dielectric constant and thickness will have better result of S-parameter. 

 

3.5 S-parameter Measurement Results 

From the observation, the measurement results in Table 6 show the FSS structure performed well. The S11 is -

31.61 dB and the S21 is -0.29 dB when without attach the FSS result of attach octagon design FSS structure is -19.82 

dB and its S21’s result is -35.04 dB. The FSS structure tries to solve the 5.8 GHz signal frequency and don’t want let it 

pass through. From the observation, after attach the square design FSS structure and octagon FSS, the S11 value 

increase 10.67 dB and 11.78 dB respectively. The value of S21 with attach square loop design FSS structure decrease 

38.05 dB and value of S21 with attach octagon design FSS structure decrease 34.75 dB. 

 

Table 5 - S-parameter results of FSS square loop design with various dielectric substrate at 5.8 GHz 

 

Dielectric 

Substrate 

Dielectric 

constant 

Thickness 

(mm) 

S11 

(dB) 

S21 

(dB) 

FR-4 4.4 1.6 -0.44 
-26.77 

 

Rogers 

RT5870 
2.33 1.575 -0.14 -31.06 

Rogers 

RT5880 
2.2 0.79 -0.05 

-44.72 

 

TLY-5 2.2 1.5738 -0.67 -39.66 

 

Table 6 - S-parameter result of measurement 

 
Measurement 

condition 

Frequency 

(GHz) 

S11 

(dB) 

S21 

(dB) 

Without attach square 

design FSS structure 
5.8 

-

31.61 
-0.29 

With attach square 

design FSS structure 
5.8 

-

20.12 

-

38.34 

With attach octagon 

design FSS structure 
5.8 

-

19.82 

-

35.04 
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4. Conclusions 

In the conclusions, the three different FSS design have been designed and compared. The octagon and square FSS 

have been fabricated and measured. The simulated results of FSS structure were simulated in an ideal free space 

measurement with CST-MWS boundary condition setting. Therefore, the measured results of S-parameter show 

slightly different compare with the simulated results might due to free space measurement path loss such as free space 

loss, interference signal from environment. The results show that the hexagon, octagon, and square FSS able to 

eliminate the interference frequency at 5.8 GHz. As a results, the FSS structure is one of the technique which can use to 

eliminate the interferences or unwanted signal without using any external power. 
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