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Abstract: Massive multiple-input, multiple-output (M-MIMO) is an important knowledge for fifth-generation (5G) 
wireless cellular networks. The pilot contamination (PC) is an issue in massive MIMO due to interference between 
adjacent cells. We proposed that the number of pilot sequence inside a cell could become smaller than or equal to 
the number of users (UEs), taking into account the different number of UEs that transmitted the same pilot sequence 
in the same cell. In addition, the pilot sequence became mutually orthogonal for different cells to prevent PC among 
cells. In this paper, we analyzed a channel estimation for time division duplex (TDD) and improved the achievable 
data rate by reducing the PC for limiting user capacity and using channel orthogonality for minimum mean square 
error (MMSE) precoding. From the simulation results, the proposed scheme provided a data rate for two several 
situations, with and without interference PC for an increased number of antennas. Consequently, increasing the 
number of coherence intervals made the channel estimation critical and provided a small data rate due to increased 
noise and interference at increased transmit pilot sequence. 
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1. Introduction 

The challenge in 5G wireless cellular networks is how to increase demand for achievable high data rate for mobile 
communication. The massive MIMO systems can meet growing demands for high data rates, and the massive MIMO 
transmits signals to every user with a huge antenna element 𝑀𝑀 in the BS (Müller et al., 2013). In massive MIMO the base 
station (BS) transmits signal under channel reciprocity for TDD and can adopt both downlink and uplink channel 
responses based on pilot sequence. The challenges in future 5G wireless cellular networks is how to increased data rate 
to several gigabits based on higher frequencies, so an increased high data rate for mobile terminal is essential to decrease 
latency. Massive MIMO systems provide the degree of freedom needed with a grown number of 𝑀𝑀, which enables several 
UEs to exploit the similar frequency (Swindlehurst et al., 2014). Moreover, increased number of 𝑀𝑀 at the BS able to 
increases the data rate, it is essential to use an array gain to decrease the radiated power (Larsson et al., 2014). A massive 
MIMO system exploits a huge number of antenna arrays at the BS to assist ten UEs’ equipment However, this technique 
suffers from PC due to inter-cell interference that cannot be fully eliminated as shown in Fig. 1. Due to a limitation of 
coherence channel in multi-cell cellular systems, the orthogonal pilot reuse sequences cannot be allocated for each UEs 
in every cell (Lu et al., 2014; Huy et al., 2018). 

The channel estimation is more severe for pilot sequence using short coherence intervals. Meanwhile, reducing the 
PC requires using a long coherence interval to serve a large number of UEs. From the downlink of cellular networks, 
obtaining channel state information (CSI) at the BSs requires uplink pilot signalling. The PC for multiple cells can be 
avoided using the mutually orthogonal pilot sequence. Whereas during use, a number of UEs that transmit the same pilot 
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sequence in the same cell as the PC can still experience PC. The issue of massive MIMO system is still limited to PC 
due to non-orthogonality of pilot sequence transmitted by UEs from the same cell to neighbouring cells and this has 
caused a significant impact on the data rate. Therefore, it is important to enhance the performance system performance 
in order to obtain better CSI and also to reduce interference. The PC is the fundamental difficulty in a multi-cell cellular 
massive MIMO system, which impacts the data rate. Nevertheless, channel estimation can be used in time division duplex 
(TDD) for training channel by transmitting pilot reuse sequences because the channel estimation suffers from the PC. 
The author (Zhang et al., 2014) proposed the semi-orthogonal pilot reuse sequences with shifted locations for 
simultaneous data and pilot transmission which successful mitigate interference based on channel estimation. 

In this paper, we focused on channel estimation for TDD and reduced PC by limiting user capacity. In addition to 
that, we used the asymptotic channel orthogonality for both scenarios, with and without interference, in downlink PC. 
The CSI checked the channel status by transmitting predefined pilot sequence and evaluated the response of the channel 
using TDD (Müller et al., 2013; Huh et al., 2012). To mitigate intra- and inter-cell interference in TDD mode, all UEs 
sent pilot signals that were orthogonal to other UEs inside these cells. The issue for the massive MIMO system was the 
growth of the large of 𝑀𝑀 at the BS, causing pilot contamination (Jose et al., 2009; Appaiah et al., 2010; Li, etal., 2013; 
Ashikhmin and Marzetta 2012; Fernandes et al., 2013; Salh et al., 2017). The number of orthogonal pilot sequence was 
limited for coherence time. 

Nevertheless, the orthogonal pilot sequence must reuse the pilot sequence for neighbouring cells due to short 
orthogonal sequences (Jubin et al., 2011). 

The pilot is reused in the same cell for UEs, which used the covariance channel matrix for every user by using signal 
subspace, and it guaranteed channel estimation accuracy in addition to reducing pilot contamination (Li et al., 2013; 
Lim etal., 2015; Yucheng et al., 2018). Additionally, large diversity gains can suppressed the inter-cell interference by 
collective the number of 𝑀𝑀. The property of propagation was favourable to achieve the high data rate based on used 
properties of MMSE receivers with CSI, where the precoding MMSE resulted great performing at a high and low signal- 
to-noise ratio (SNR) in terms of data rate. 

 

 
 

2. System Model 

Fig. 1 - Pilot contamination between neighbouring cells (Lu et al., 2014) 

In downlink data transmission, every BS sent signals to all active UEs in all cells. We consider a cellular system 
composed of one BS with 𝑴𝑴 antennas and active UEs 𝑲𝑲. The BS applied the beamforming based on CSI, and the received 
signal at the 𝒋𝒋 𝒕𝒕𝒉𝒉 UEs is 

 
 
The downlink transmit signal from BS to each UE 𝑲𝑲 received each pilot sequence from all BS to mitigate the 

interference at transmit signals. The BS used the channel reciprocity to evaluate the channel status, and the transmission 
signal contained the desired signal and interference and noise signals. The received signal can be written as 

 
 

 
 

where 𝛾𝛾 𝐻𝐻 represents the channel vector from BS to the UE inside cell 𝛾𝛾𝑘𝑘 = √𝜀𝜀𝑟𝑟  𝑔𝑔𝑘𝑘 ,  gk  represents  the  small 
fading, 𝜀𝜀𝑘𝑘 is constant for attenuation effect, 𝓌𝓌jkis information symbol, 𝛽𝛽𝑑𝑑 is the pilot in the downlink for SNR, 𝒵𝒵𝑗𝑗𝑘𝑘  is the 
beamforming of the ith cell, and 𝑛𝑛𝑗𝑗𝑘𝑘 is additive white Gaussian noise. 
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Due to the uplink-downlink channel reciprocity, the BS estimates the equivalent MIMO channel 𝛾𝛾𝐻𝐻 which is the 
Hermitian transpose of uplink  . In downlink transmission, every signal UE estimated the correlated received signal with 
pilot. If UEs had the same pilot sequence, the received pilot signal is correlated with UEs. In TDD, the length of pilot 
sequence depended on how many UEs are inside the cell and the number of cells per cluster. The pilot sequence 
became mutually orthogonal for different cells to prevent pilot contamination among cells. Consequently, at transmit 
signal the first coherence interval allowed transmitting pilot sequence to form the first user in every cell, while other 
users mute so every cell could estimate its UEs for channel  . The maximal data rate at transmit signal to 𝑘𝑘𝑡𝑡ℎ user 
corresponded to the received signal for MMSE precoding (Ngo et al., 2013; Marzetta , 2010; Khansefid, and 
Minn,2015; Luo et al., 2016). The downlink data estimate of the 𝐾𝐾 𝑡𝑡ℎ user and is given as 

 
 

 
 

 

 

 

When there was no overlap between multipath signals, the pilot sequences were effective and give good estimation 
channel and covariance matrices. We divided every denominator and numerator at increased number of antennas to 𝑀𝑀 → 
∞ by √𝑀𝑀 ; in the last term in (4). We could accurately detect information data, and the channel vectors became orthogonal 
depending on the increased number of antennas in downlink transmission. 

The problem appeared when transmitting the same (orthogonal) pilot sequences from all UEs at the same time and 
also same cell to all neighbouring cells. Due to a limitation of coherence channel in multi-cell cellular systems, the 
orthogonal pilot reuse sequences cannot be allocated for all users in every cell. 

The channel estimation was more severe for pilot sequences using short coherence intervals. The channel estimation 
was done by assigning the BS in a multi-cell system with the pilot reuse sequences. The flowchart in Fig. 2 shows that 
the increases of the number of transmit 𝑀𝑀 from 1 → ∞ increased the pilot contamination due to the limited channel in 
massive MIMO system(Salh et al., 2017; Luo et al., 2016). To improve the transmission performance to the maximal 
high data rate for 5G we used pilot reuse sequences through training channel estimation for a number of coherence 
channel interval based on large scale fading which suppressed SINR for large scale fading. 
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Fig. 2 - Mitigated pilot contamination to achievable high data rate 
 
2.1 Performance Achievable Data Rate 

To achieve the higher data rate, we analyzed and derived the first term of signal in (2) to obtain the desired signal 
for grown number of 𝑀𝑀. 
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Limiting coherence channel was convenient because the channel estimation was achieved by accorded BS in a multi-cell 
system with pilots reuse sequence(Peiyao et al., 2015). To solve this issue, we used the pilot reuse with pairwise 
orthogonal. Moreover, the use of pilot sequences was proposed to limit the resource of channel estimation. The 
interference was mitigated by using the accurate pilot sequence at an increased number of antennas: 

 

 

From (10) and (11) reducing the power of the interference to all UEs, which can be simplified as 
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When 𝑖𝑖 = 𝑘𝑘 at transmit signal in the same cluster and same pilot signals. The estimation channel for the precoding vector 
form cell is 𝑗𝑗 to UE 𝐾𝐾, the cross-cell interference growths. This means that the PC becomes important, which will cancel 
the exceeded interference suppression ability of the MMSE (Fuqian et al., 2018); and the correlated channel is given as 

 
 

𝑗𝑗

The MMSE channel estimation error is 𝛾𝛾�𝑗𝑗𝑗𝑗 = 𝛾𝛾𝑗𝑗𝑗𝑗 − 𝛾𝛾�𝑗𝑗𝑗𝑗  where 𝛾𝛾�𝑗𝑗𝑗𝑗 is uncorrelated with 𝛾𝛾�𝑗𝑗𝑗𝑗,𝑚𝑚 .  When the signal was 
transmitted to every user 𝐾𝐾, there was a relationship between every user inside the cell and the covariance matrix channel 
(Fernandes et al., 2013), which was sensitive to the distributed UEs and is given by 
 
  

 
 
where 𝑖𝑖𝑀𝑀 is the identity matrix 
 

 

 
 

 
 
 
 
 

 

where 𝛾́𝛾𝑗𝑗𝑗𝑗𝑗𝑗 is the correlation between the pilot and transmitted pilot signal from BS in a cell to UEs. The precoding vector ∅𝑗𝑗𝑗𝑗𝑗𝑗  from 
BS in cell 𝑙𝑙, for UEs k in cell 𝑙𝑙 becomes 

 

According to (You et al., 2015), the SINR was obtained when the large number of 𝑀𝑀 rose to ∞. The last term for noise 
power in downlink was obtained according (2), which we express as 

 

The achievable data rate per user in closed forms for lower bound was evaluated at an increased number of antennas. 
Consequently, the high data rate can be achieved depending on the SINR. Where, the SINR for the pilot sequence gave 
accurate channel estimation when the transmission signalled for interferenc. The channel estimation was more severe for 
pilot sequences that used short coherence intervals. 
Reducing the PC required the use of long coherence intervals to serve large numbers of users, but increasing the number 
of coherence intervals made the channel estimation critical. Meanwhile, the BS used spatial beamforming to enhance the 
data rate in downlink transmission to 𝐾𝐾𝑡𝑡ℎ UEs, where the 𝜗𝜗2 provided the accuracy of variance channel for the pilot 
sequence and influenced the achievable data rate, corresponding to orthogonal pilot sequence in (Khuri, et al., 2003; You 
et al., 2015; Lim et al., 2015; Khormuji et al., 2016). The accuracy of the pilot sequence is written as 𝜗𝜗𝑘𝑘,𝑗𝑗

2 = 𝛽𝛽𝑑𝑑𝜀𝜀𝑟𝑟
2

1+𝜀𝜀𝑟𝑟 𝛽𝛽𝑑𝑑
, and 

when employing the same pilot reuse between neighbouring cells, the PC increased. If the frequency reuse utilized the 
same pilot between adjacent cells, it had not accurately avoided the interference between adjacent cells in the same 
cluster. Consequently, employing more pilot reuse sequences decreased the pilot contamination. The coherence interval 
was for acquiring channel knowledge at the BS, where the coherence interval 𝒰𝒰 scheduled the number of users. 
To enhance the achievable data rate, require an increase in the number of antennas 𝑀𝑀 more than a number of UEs. The 
number of UEs was given according to a coherence interval 𝒰𝒰 = 𝑇𝑇𝑐𝑐 𝐵𝐵𝑐𝑐, where 𝑇𝑇𝑐𝑐 and 𝐵𝐵𝑐𝑐 represent coherence time and 
bandwidth respectively. Which able to increase the data rate by scheduling and limiting the capacity of UEs when the 
number of UEs was less than a coherence interval 𝒰𝒰 = 0.5 𝑇𝑇𝑐𝑐 𝐵𝐵𝑐𝑐. The coherence interval required scheduling the number 
of UEs, the pilot sequences were reused because the number of orthogonal pilot sequence were not enough when the 
number of users was more than the large coherence interval 𝒰𝒰 = 𝑇𝑇𝑐𝑐 𝐵𝐵𝑐𝑐. Otherwise, increasing the number of coherence 
interval (𝑛𝑛𝑐𝑐) increased the estimation errors for CSI, which was not good because a greater coherence interval created 
more noise and interference. The pilot sequence increased the number of coherence interval affected for estimation errors 
for CSI, and it became bad because of the increased noise and interference. The pilot sequence in downlink for SINR is 
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The achievable data rate per user in closed forms for lower bound is expressed as 

   

where 𝑛𝑛𝑐𝑐 is the number of coherence intervals, 𝛽𝛽𝑑𝑑 represents the pilot sequence, and 𝜀𝜀𝑟𝑟 represents large-scale fading. 

3. Results and Discussion 
Fig. 3 shows that the channel estimation for MMSE in downlink transmission was varied based on the large number 

of PC 𝛽𝛽𝑑𝑑 with interference. Moreover, the PC gave greater impact with SINR because the SINR increased with the 
increased number of antennas. 

 
Fig. 3 - Achievable data rate with pilot contamination 

 
In Fig. 3, both with and without pilot interference decreased due to their imperfect interference suppressions. The 

interference suppression can provide arise to performance improvements for achieved data rate suppressed interference 
in the direct-path. The achievable data rate per users depended on the strength of the PC interference. The PC with 
interference provided less data rates than PC without interference, which reduced inter-user interference. Suppressed PC 
depended on the increasing number of transmitting pilot reuse with large scale fading. It was found that the only PC 
provided high data rate more than PC with interference by using coherence channel. 

In Fig. 4, the performance of achievable data rate depended on distributed users inside a cell and the distance from 
the BS to the location of users at different coherence intervals (𝑛𝑛𝑐𝑐). The achievable data rate using different numbers of 
coherence intervals provided a high data rate when the SNR varied from -10 dB to 70 dB. Moreover, it was found that 
when the number of coherence interval increased at 𝑛𝑛𝑐𝑐 = 3 and 𝑛𝑛𝑐𝑐 = 4, it provided the same value at increased SINR.  
In addition to that, it provided a large value of data rate, when the number of coherence interval 𝑛𝑛𝑐𝑐 = 2. Consequently, 
the achievable data rate was still saturated with PC at high SNR. Meanwhile, a large number of coherence intervals made 
the channel estimation critical and provided a small data rate due to the increased pilot sequences. 
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Fig. 4 - Achievable data rate with SNR 

 
 

From Fig. 5, the achievable DR per cell increased monotonically with a large number of pilot reuse sequences. This 
was based on using a greater number of UEs in all cell where the pilot reuse provided the lower level of PC for the 
accuracy of channel estimation. From Fig. 5, the increase number of coherence interval 𝑛𝑛𝑐𝑐 = 4 provided more achievable 
data rate compared to the increase number of coherence interval 𝑛𝑛𝑐𝑐 = 2 . Consequently, from Fig. 5, it was found that 
the achievable data rate first increased when the number of users was small and then decreased, where, the increasing 
number of users in every cell depended on the number of the propagation channel and minimized pilot reuse sequences. 
Furthermore, the increase number of the users in every cell increased the number of pilot reuse sequences, where, in this 
case, the channel estimation became critical and provided the low data rate. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5 - Achievable data rate with number of users 𝑲𝑲 

 
 

In Fig. 6, we obtained the achievable data rate using large numbers of antennas 𝑀𝑀 for different values of K, 
depending on mitigating pilot contamination by reusing the same and different pilots between neighbouring cells. Where 
the covariance channel matrix tended to be orthogonal, the performance of data rate using MMSE precoding rose slowly 
because the pilot contamination with interference was increased. The frequency reuse utilized the same pilot between 
adjacent cells, which could not accurately avoid the interference between adjacent cells in the same cluster. Consequently, 
it was found that the pilot contamination with interference achieved a lower data rate than when using only pilot 
contamination, as shown in Fig. 6. This is because the pilot contamination with interference from UE was orthogonal 
with UE under pilot contamination. 
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4. Conclusion 

 
Fig. 6 - Achievable data rate with number of antennas 

This paper proposed that the number of pilot sequences inside a cell became smaller than or equal to the number of 
users, taking into account the different number of users that transmitted the same pilot sequences in the same cell. In 
addition, the pilot sequences became mutually orthogonal for different cells. Consequently, scheduling a large number 
of users between adjacent cells reduced the inter-cell interference. In addition to that, a large number of UEs 𝐾𝐾 in every 
cell increased the number of pilot reuse sequences. In this situation, the channel estimation became critical and provided 
a low data rate. From the simulation result, an increased number of coherence intervals made the channel estimation 
critical due to large-scale fading and large number of users provided a small data rate due to the increased pilot sequences 
and interference. 

 
Acknowledgement 

This research was funded by the ministry of higher education Malaysia under Fundamental Research Grant Scheme 
(Vot. 1627). 

 
References 
[1] Appaiah, K., Ashikhmin, A., & Marzetta, T. L. (2010). Pilot contamination reduction in multi-user TDD systems. 

In 2010 IEEE International Conference on Communications, Cape Town, South Africa. 
[2] Ashikhmin, A., & Marzetta, T. (2012). Pilot contamination precoding in multi-cell large scale antenna systems. In 

2012 IEEE International Symposium on Information Theory Proceedings, Cambridge, MA, USA. 
[3] Fernandes, F., Ashikhmin, A., & Marzetta, T. L. (2013). Inter-cell interference in noncooperative TDD large scale 

antenna systems. IEEE Journal on Selected Areas in Communications, 31(2), 192-201. 
[4] Fuqian. Y., Penghao, C., Hua. Q., & Xiliang, L. (2018). Pilot Contamination in Massive MIMO Induced by Timing 

and Frequency Errors. IEEE Transactions on Wireless Communications, 17(7), 4477 - 4492. 
[5] Huh, H., Caire, G., Papadopoulos, H. C., & Ramprashad, S. A. (2012). Achieving" massive MIMO" spectral 

efficiency with a not-so-large number of antennas. IEEE Transactions on Wireless Communications, 11(9), 3226- 
3239. 

[6] Huy, D. H., Dang, A. N., Van, D. N., Tien, H. N., & Muhammad, Z. (2018). Pilot decontamination for multi-cell 
massive MIMO systems using asynchronous pilot design and data-aided channel estimation. Physical 
Communication, 30,76-85. 

[7] Jose, J., Ashikhmin, A., Marzetta, T. L., & Vishwanath, S. (2009). Pilot contamination problem in multi-cell TDD 
systems. In Proc. of IEEE ISIT, Seoul, South Korea. 

[8] Jubin, J. Ashikhmin, A. Marzetta, T. L. & Vishwanath, S. (2011). Pilot contamination and precoding in multi-cell 
TDD systems,” IEEE Transactions on Wireless Communications, 10(8), 2640-2651. 

[9] Khansefid, A. & Minn, H. (2015). Achievable downlink rates of MRC and ZF precoders in massive MIMO with 
uplink and downlink pilot contamination, IEEE Transactions on Communications, 63(12), 4849-4864. 

[10] Khormuji, M. N. (2016). Pilot-Decontamination in Massive MIMO Systems via Network Pilot–Data Alignment, 
IEEE international conference on communication workshops (ICC), Kuala Lumpur, Malaysia. 

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7

8

Number of BS Antennas [M]

Ac
hi

ev
ab

le
 D

at
a 

Ra
te

 p
er

 U
se

r [
bp

s/H
z]

 

 
Only Pilot Cont.
Pilot Cont. with Interf.

    

 
 

 
 

 

 

 
  
   



186  

Adeeb Salh et al., Int. J. of Integrated Engineering Vol. 12 No. 2 (2020) p. 177-186 
 
 

[11] Khuri, A. I. (2003). Advanced calculus with applications in statistics. Hoboken, NJ: Wiley-Interscience, 89(427), 
1147-1148. 

[12] Kobayashi, T. Abdul Khalid, M.F. Wahab, N. A. Rashid, A. & Awang, Z. (2017). Target Localization in MIMO 
OFDM Radars Adopting Adaptive Power Allocation among Selected Sub-Carriers. International Journal on 
Advanced Science, Engineering and Information Technology, 7(1), 291-298. 

[13] Larsson, E. G., Edfors, O., Tufvesson, F., & Marzetta, T. L. (2013). Massive MIMO for next generation wireless 
systems. IEEE Communications Magazine, 52 (2), 186-195. 

[14] Li, L., Ashikhmin, A., & Marzetta, T. (2013). Pilot contamination precoding for interference reduction in large scale 
antenna systems. In 2013 51st Annual Allerton Conference on Communication, Control, and Computing (Allerton), 
Monticello, IL, USA. 

[15] Lim, Y. G., Chae, C. B., & Caire, G. (2015). Performance analysis of massive MIMO for cell-boundary users. IEEE 
Transactions on Wireless Communications, 14(12), 6827-6842. 

[16] Lu, L., Li, G. Y., Swindlehurst, A. L., Ashikhmin, A., & Zhang, R. (2014). An overview of massive MIMO: Benefits 
and challenges. IEEE journal of selected topics in signal processing, 8(5), 742-758. 

[17] Luo, Z., Wang, H., & Lv, W. (2016). Pilot contamination mitigation via a novel time-shift pilot scheme in large- 
scale multicell multiuser MIMO systems. International Journal of Antennas and Propagation, 2016,1-9. 

[18] Marzetta, T. L. (2010). Noncooperative cellular wireless with unlimited numbers of base station antennas” IEEE 
Transactions on Wireless Communications, 9(11), 3590-3600. 

[19] Müller, R. R., Vehkaperä, M., & Cottatellucci, L. (2013). Analysis of blind pilot decontamination. IEEE Journal of 
Selected Topics in Signal Processing, 8(5), 773 – 786. 

[20] Ngo, H. Q., Larsson, E. G., & Marzetta, T. L. (2013). Energy and spectral efficiency of very large multiuser MIMO 
systems. IEEE Transactions on Communications, 61(4), 1436-1449. 

[21] Peiyao, Z., Zhaocheng, W., Chen, Q., & Sheng, C. (2015). Location-Aware Pilot Assignment for Massive MIMO 
Systems in Heterogeneous Networks. IEEE Transactions on Vehicular Technology, 65(8), 1-6. 

[22] Salh, A., Audah, L., Shah, N. S. M., & Hamzah, S. A. (2017). Reduction of pilot contamination in massive MIMO 
system. IEEE Asia Pacific Microwave Conference (APMC), Kuala Lumpar, Malaysia. 

[23] Shen, J. C. Zhang, J. & Letaief, K. B. (2015). Downlink user capacity of massive MIMO under pilot contamination. 
IEEE Transactions on Wireless Com., 14(6), 3183-3193. 

[24] Swindlehurst, A. L., Ayanoglu, E., Heydari, P., & Capolino, F. (2014). Millimeter-wave massive MIMO: The next 
wireless revolution? IEEE Communications Magazine, 52(9), 56-62. 

[25] You, L., Gao, X., Xia, X. G., Ma, N., & Peng, Y. (2015). Pilot reuse for massive MIMO transmission over spatially 
correlated Rayleigh fading channels. IEEE Transactions on Wireless Communications, 14(6), 3352-3366. 

[26] Yucheng, W., Tong, L., Meng, C., Liang, L., & Weiyang, X. (2018). Pilot contamination reduction in massive 
MIMO systems based on pilot scheduling. EURASIP Journal on Wireless Communications and Networking, 
2018,1-9. 

[27] Zhang, H., Zheng, X., Xu, W., & You, X. (2014). On massive MIMO performance with semi-orthogonal pilot- 
assisted channel estimation. EURASIP Journal on Wireless Communications and Networking, 2014(1), 220-234. 


	The International Journal of Integrated Engineering
	1. Introduction
	2. System Model
	Fig. 1 - Pilot contamination between neighbouring cells (Lu et al., 2014)
	Fig. 2 - Mitigated pilot contamination to achievable high data rate

	3. Results and Discussion
	Fig. 3 - Achievable data rate with pilot contamination
	Fig. 4 - Achievable data rate with SNR
	Fig. 5 - Achievable data rate with number of users 𝑲

	4. Conclusion
	Fig. 6 - Achievable data rate with number of antennas

	Acknowledgement
	References

