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Nomenclature  

X1     Cutting speed  (m/min) 

X2    Depth-of-cut  (m/min) 

X3    Feed rate (mm/sec) 

X4    Immersion angle (o) 

W1  Weight for surface roughness 

W2  Weight for machining time 

F1   Predicted value for surface roughness (μm) 

F2   Predicted value for machining time (min) 

1 Membership function  for surface roughness 

2 Membership function for machining time 

 

1. Introduction 

The surface roughness concept in end milling refers to a quantified deviation of the texture for milled specimens from 

their ultimate appearance [1,2]. Obtaining large deviations implies surface roughness while small deviations signify 

Abstract: This paper targets the surface roughness concept in end milling in which the tool-work material 

combination is central to its success. At present, sufficient optimal surface roughness information is repeatedly not 

accessible to CNC end milling operators and this problem is anticipated to grow worse in the forthcoming years. 

Consequently, the unique development and validation of optimisation tools are interventions to tackle access to 

optimal roughness information problems. This paper examined two novel models, the combined artificial neural 

network and bat algorithm as well as joint artificial neural network and particle swarm optimisation to predict and 

optimise the process parameters of an end milling scheme. Both models were tested with literature data. 

Additionally, the work investigates machining time and introduces a bi-objective fuzzy goal programming 

optimisation model. The striking results revealed the optimal values as 0.8816 and 0.8088 for the particle swarm 

optimisation procedure while the bat procedure yielded 0.275 and 0.178, which places the bat procedure ahead of 

the counterpart, particle swarm optimization procedure. 
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surface smoothness1. However, a value in-between these two extremes, the optimal value, are desirable in end milling 

operations [3-9]. Certainly, at present, general studies in end milling optimisation for computer numeric controlled 

(CNC) machines is still in its immaturity. End milling is one of the most expensive [10-12] and significantly time-

consuming machining, requiring precision, skill and expertise of the milling operator [13]. Furthermore, end milling is 

a specialized aspect with many jobs from the assembly operations such as automobile systems [14], and any mistake on 

the machining process could result in the wasteful dumping of worked materials for new ones or re-processing [15]. 

Therefore, the optimisation of the process is critical for judicious resource utilization [16-18]. As such, surface finish is 

a common benchmark which should attract scientific attention for greater scrutiny and analysis [19,20]. At present, in 

practice, sufficient optimal surface roughness information is repeatedly not accessible to CNC end milling operators 

and this problem is anticipated to grow worse in the forthcoming years [21]. This research gap triggered the current 

investigators to optimise end milling parameters using novel and innovative schemes [22-28]. Consequently, this paper 

examined two novel models, combined artificial neural network and bat algorithm (ANN-BA) as well as joint artificial 

neural network and particle swarm optimisation (ANN-PSO) to concurrently predict and optimise the process 

parameters of an end milling scheme. Both models were tested with literature data from Prajina’s work [29]. The 

principal advantages of both the artificial neural network and the bat algorithm are exploited for the benefit of the work. 

The value brought by the artificial neural network into the union is its aptitude to perform through partial information; 

surface roughness requires expensive equipment and inability to use this equipment poses a threat in measurement 

activities. Thus, the artificial neural network is a substitute for this concern. The complementary value brought by the 

bat algorithm is its incredibility fast convergence at the actual phase by swapping from voyaging to utilization. 

Interestingly, the combination of these advantages has not been exploited to solve the surface roughness optimisation 

problem of machined parts to date. 

This research is innovative and a rare method to machinery practice by tackling a research problem that is sparsely 

treated in machining science and technology studies: combined prediction and optimisation of surface roughness. 

Learning about this novel method for end milling is critical for customer retention and cost minimisation purposes 

[17,18]. The outcome of this work will stimulate understanding into how to predict with precision and optimise the 

surface roughness of machined parts in the machine shops, and by extension in general milling processes. This will 

influence the competence and reliability of judgment for machine shop engineers, their consciousness to attain optimal 

surface roughness for customer retention, company’s sustenance and the development of enhanced training and 

operational policies. 

 

2.   Research Methodology 

The research methodology presented in the current study is based on the information in Figures 1 and 2. One of the 

reasons for computing the BA and particle swarm optimisation (PSO) algorithms is that they both possess explorative 

and exploitative ability for searching the able solution spaces for a problem of interest [30]. The first two stages in 

Figures 1 and 2 have been addressed by different authors in literature, and an investigation was by Prajina [29]. Thus, 

this work is limited to the remaining stages in Figure 1. First, the development of predictive models for surface 

roughness and machining time is considered and an artificial neural network, ANN, is selected judged by its excellent 

predictive power [31,32]. This step is then followed by proposing the bi-objective fuzzy goal programming model. 

Finally, the description of bat algorithm is offered.  

In establishing the proposed framework, the ANN-cum-BA scheme, the following nomenclature is employed to 

explain the non-linear fuzzy bi-objective optimisation scheme. The characteristic of ANN model involves modification 

of the values of the connecting weights among the various layers in a selected ANN architecture, to minimise a cost 

function (Equation 1) that consider the differences between predicted and actual values. In choosing the architecture for 

the ANN scheme (Figure 3), the preferred structure is a 2-layer hidden platform that accommodates the parameters of 

immersion angle, feed rate, depth-of-cut and cutting speed, being considered as the inputs whereas the surface 

roughness or machining time was considered as the output(s). Interestingly, as the input signals merge with the linking 

weights of the ANN platform, the final results produce a summation outcome (Equation 1) or a product outcome 

(Equation 2) [33-36]. 
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Fig. 1 - The proposed ANN-BA flowchart 
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Fig. 2 - The ANN-PSO flowchart 

          

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3 - ANN architecture for surface roughness (or machining time) prediction 
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     Equation (1) [31] was found useful to create values for nodes in the subsequent layers. The conversion of the input 

signal into output in a node is based on activation functions (hyperbolic tangent, Gaussian and sigmoid functions). The 

sigmoid function, also referred to in Equation (3) has the utility to map the input values from Equation (1) to and array 

between 0 and 1. The Equation (3) has been found to be very effective by researchers to train ANN schemes [31]. The 

incentive may be due to the nature of most outputs, which fall between 0 and 1. In choosing the transformation for the 

sigmoid function, the activation function was considered while keeping in view its success path in supervised ANN 

schemes [36]. Through the use of Equation (3) to establish the real value of an ANN’s node, a transformation of 

Equation (1) was made through an indirect means to a non-linear structure (Equation 4). 
  

yj 
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The error terms for the output layer (
o

j ) is defined as Equation (5) and Equation (6) expressed the error terms at the 

hidden layer (
h

j ) in the ANN model [37].  
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where, actualjy ,  denotes the target output j value and predictedjy ,  denotes the predicted output j output value. 
h

ijy  is the 

output between layer i and j in the ANN model and 
h

ijw  is the connecting weight between one hidden layer and the 

other. 

 

      The values of 
o

j and 
h

j  are used in updating of the connecting weights at the output and hidden layers in the 

ANN architecture as shown in Equations (7) and (8), respectively.  
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where, 
o

ijw is the  weight connecting weight between a hidden and the output layer in the ANN model.   is known as 

the learning rate.  

 

To monitor the deviation of the newly trained data from the actual, the researchers concluded to use the mean square 

error, MSE (Equation 9) as a lens to control the deviations.   
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On a general note, in discussing the artificial neural network optimization, the objective function formulated is the 

mean square error function as shown in Equation (9). 

 

2.1 Bi-objective fuzzy goal programming (FGP) optimisation model   

The generated equations for computing the outputs from the trained ANN models for surface roughness and machining 

time are considered as equations that are required to be minimised, given as Equations (10) and (11), respectively.  
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Min Z1 = )(1 xf                                   (10) 

 

Min Z2 = )(2 xf                                    (11) 

 
      To incorporate the decision from a workshop manager, fuzzy logic is considered as a tool in establishing the 

interrelationships between workshop manager’s desires for surface roughness and machining time that will result in 

optimal use of computer numerically control (CNC) end milling machines in their workshop. The design of 

membership functions, surface roughness ( 1 ) and machining time ( 2 ) is carried out using the maximum values for 

surface roughness (Ramax) and machining time (Tmmax) and as obtained from Prajina29, is the expected value at the 

margin between the core and the boundary membership functions (χi). By applying the knowledge gained from the 

work of Amid and Ghodsypour [38], we present the membership functions for surface roughness and machining time 

minimisation as Figures 4a and 4b, respectively.  
 

 
Fig. 4 (a) - Membership function for surface roughness 

 

 
Fig. 4 (b) - Membership for machining time 

 
      By considering the information in Figures 4a and 4b, the soft constraints in the proposed model are expressed as 

Equations (12) and (13)  
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where 1 is the membership function for surface roughness and 2  is a membership function for machining time 

         The literature approach to tackling the problem of assigning weights to surface roughness and machining time is 

to consider fixing bounds on the ratio of surface roughness to machining time weights [39]. To achieve this, Equations 

(14) and (15) are included in the proposed model. One benefit of this approach is that it will reduce the effect of 
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subjective weight allocation by a decision marker (workshop manager) on the optimal values of end milling process 

variables.  
 

U
w

w
L 

2

1
                                 (14) 

121 =+ ww                                             (15) 

 
With the expected limits on the weight ratio and the expected membership functions for the objective functions, Amid 

and Ghodsypour [38] point out that a single objective that will be maximised may be stated in Equation (16).  
 

Max G =
=

2

1i

iiw                                                         (16) 

      The optimal values for end milling parameters may be obtained using the limit of parameters as constraints [40]. 

Given this assertion, Equations (17) to (20) are considered.  
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2max,22min, xxx                                 (18) 

3max,33min, xxx                                 (19) 

4max,44min, xxx                                 (20) 

 
      The proposed bi-objective weighted fuzzy goal programming model for surface roughness and machining time 

minimisation recalled from previously stated equations is presented as follows: 
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       To implement a BA, the initial values for decision variables are generated and the frequency for each bat is 

also generated using Equation (21). After this, the quality of the solution from each bat will be determined and the 

global solution at 0=t  is also determined.  

 

( )min max mini bQ Q Q Q = + −                               (21) 
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where iQ represents bat i frequency, minQ and maxQ  represents the minimum and maximum frequency of the bats, and 

b represents a random number having an array from 0 to 1.  

The value of velocity for each virtual bat changes as the iteration-size of a BA increases. To evaluate the value 

of a virtual bat velocity at step t, the current position of a bat, the global solution for the bats and current frequency of a 

bat at iteration-size t-1 are combined as Equation (22).   
 

1 1( )t t t

ij ij ij j iv v x x Q− − = + −                    (22) 

 

where 
t

ijv represents the velocity of bat i for decision variable j at step t, 
t

ijx  represents the position of bat i for decision 

variable j at step t and 
jx represents the global value of decision variable j. 

This new velocity (
t

ijv ) is used in flying a virtual bat to a new position by combining it with its position at iteration-size 

t-1. The decision on whether to accept a new position, which is the result obtained from Equation (23), depends on the 

pulse rate (
t

ir ) of a bat and a random number ( iV ) that lies between )1,0( . If 
t

ir < iV , the bat is allowed to walk 

randomly around its old solution at iteration-size t-1. This enables any bat that experiences this problem to carry out 

local searches based on its previous best solution at iteration size t-1. This is achieved using the average loudness (
tA ) 

of at the bats at iteration-size t and within the range of -1 and 1. This computation can be achieved using Equation (24).    
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      As the BA iteration-size increases, the values of 
t

ir  and 
t

iA  are subject to modifications in a way that the value of 

t

ir  for bat i increases and the value of 
t

iA  for bat i  decrease as shown in Equations (25) and (26), respectively. The 

decision on when to modify the values of 
t

ir  and 
t

iA  depends on the difference between the quality of the solution at 

iteration-size t ( tf ) and iteration-size t-1 ( 1−tf ). Also, consideration is given to the difference between the current 

value of 
t

iA  and a random number ( iU ) the lies between )1,0( . If 1− tt ff  and 
t

ii AU  , the values of 
t

ir  and 
t

iA  

increase and decrease, respectively. If the conditions are not satisfied, the values of 
t

ir  and 
t

iA  at iteration t are 

retained.  
 

1−= t
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t

i AA                       (25) 

 

( )0 1 exp( )t

i ir r t= − −                     (26) 

 

where  and   represent constant parameters. 

To generate an unbiased solution (optimal solution), PSO algorithm combines the cognitive knowledge (personal best 

solution) and social (global solution) knowledge at a particular iteration-size t, as shown in Equation (27) [41]. The 

directions which particles move towards are controlled by the current velocity (
t

ijv ) and the previous position (
1−t

ijx ), as 

defined in Equation (28). In order to reduce the influence of 
t

ijv  on a particle’s new position, the use of velocity 

clamping is proposed by Eberhart et al. [42].  
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where   is known as weight, c1 and c2  are constants, and r1 and r2 are uniform random numbers within the range of 

)1,0( , and lbest and gbest  represents personal and global best solutions, respectively.  

 

3.     Application, Results and Discussion 

 
        The datasets used in demonstrating the applicability of the proposed model is obtained from Prajina’s work [29]. 

The information on the ANN architecture used is presented in Table 1. 

 

Table 1 - ANN parametric settings 

Parameters Values 

Number of inputs 4 

Number of output 1 

Performance (Mean square error) 1 x 10-3 

Number of hidden layers 2 

Number of epochs 6000 

Number of neurons in hidden layer  11-4 

Training algorithm Gradient descent 

Transfer function  Sigmoid function 

 
In this article, four input features are available for the prediction network while the size of the output layer is 

one. However, the question of interest is whether there are criteria used to decide on the number of hidden layers for the 

problem as well as the adequate number of nodes that should be in the hidden layer. To tackle this problem, there are 

two schools of thought: One believes that no specific approach exists but a trial and error method will help. However, 

the second school of thought believes that some general rules exist. While studying the techniques in the two schools of 

thought, the adopted approach was approved by the results obtained by the two techniques. To align with the first 

school of thought, cross-validation was used to obtain the accuracy of the test set. The correlation coefficient obtained 

for testing the data were 0.81 and 0.52 for the developed model of the artificial neural network. The proponent of the 

first school of thought noted that the optimum number of hidden units may be lower than the number of inputs. But the 

inputs are the cutting speed, feed rate, depth of cut and immersion angel, which are four items. Consequent, the chosen 

number of hidden units is two, which is lower than four, and in concurrence with the recommendation of the first 

proponent. Furthermore, the proponent asserted that occasionally two hidden units are adequate and work best when the 

data is little, which is the present situation. For the second school of thought that believes in some general rules, there 

are many variants. Some researchers proposed the formula as (no of inputs + no of outputs) 0.5 + (1 to 10). For the 

present case, the number of inputs is 4, the number of output is 1, and the results of the application of the formula yield 

2.236 + (1 to 10), which means between 3.236 and 12.236. However, the chosen number of layers, although outside 

this range, is still close to the lower limit of 3.236, which is 2.  

For the school of thought that follows quantitative rules, a second variant proposed 2/3 of the total number of 

inputs. As there are four features, the 2/3 of 4 is 2 2/3 and two hidden layers were chosen based on this, which makes the 

obtained results in alignment with the proposal by this second school of thought, and supported by the 1988 technical 

report given by Cybenko. In the literature, it was suggested that the use of a large number of neurons in each hidden 

layer is appropriate. Consequently, in this article, eleven neurons were used for the first hidden layer while four neurons 

were used for the second hidden layer. Thus, these choices concurred with the literature suggests.  

Furthermore, the learning algorithm incorporated in the development of the artificial neural network model is 

gradient descent, which is a straight forward approach to minimize the objective function of the artificial neural 

network model. The gradient descent, while recognized as an optimization algorithm is effective in the literature to 

iteratively minimize some function while navigating in the path of the steepest descent, known as the negative of the 

gradient. The gradient descent was effectively used to train the artificial neural network model. 
    Based on the implementation of the parametric settings for the ANN architecture in Table 1, we use the literature 

datasets and the relationship between the predicted and experimental values for surface roughness and machining time 

during the training and testing stages of the ANN models, presented in scatter plots in Figures 5 to 8.   
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Fig. 5 - Scatter plot for experimental and predicted values of surface roughness using training datasets 
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Fig. 6 - Scatter plot for experimental and predicted values of machining time using training datasets 
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Fig. 7 - Scatter plot for experimental and predicted values of surface roughness using testing datasets 
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Fig. 8 - Scatter plot for experimental and predicted values of machining time using testing datasets 

 

Interestingly, from the correlation coefficient testing data, 0.8191 was obtained for surface roughness while 

0.5235 was the result for the machining time. From the literature, a correlation coefficient of more than 0.8 is usually 

portrayed as strong and since 0.8191 is greater than 0.8, it is strong and used for further analysis in this article. 

Moreover, the literature describes a correction coefficient of less than 0.5 as weak. While the 0.5235 value obtained for 

the machining time is comparatively low, it is above the threshold of 0.5 and may not be described as weak. 

Consequently, this value was used for further analysis in this work. 

Furthermore, experimental data in machining science and technology refers to data obtained through different 

means, including experimental design, which is used for the case study under investigation. In this article Table 2, 

which describes the central composite design matrix from Prajina [29] was used as the reference data upon which 

further analysis on the ANN, its integration with the bat algorithm and the particle swarm optimization were made. The 

experimental data consist of four inputs, namely depth of cut, feed rate, cutting speed and immersion angle from which 

five output terms were generated (Fx, Fy, Fz, Ra and Tm). These outputs are the forces in the x, y and z directions as well 

as the roughness average and the machining time. However, the focus of this article is only on two output measures, 

namely surface roughness (measured as roughness average) and the machining time. Machining is the processes 

involved in transforming metal pieces into final products through a metal removal process. But the machining time is 

crucial to the process engineer, which is the time when the machine processes the metal pieces. Furthermore, surface 

roughness evaluates the texture of a metal's surface, revealing the vertical deviation of an evaluated surface from its 

ultimate appearance. As surface roughness offers a reliable prediction of the performance of metal pieces during 

processing it is the focus of attention in the present article. Consequently, the machining time and surface roughness 

were chosen as the outputs reported in Prajina [29]. Besides, it is interesting to know how much percentage of data is 

used for training, testing and validation in this article. To address this issue, it should be noted that the training set was 

used to build up the artificial neural network model while the test (or validation) set serves as a useful purpose to 

validate the model built. Furthermore, while the process of training was successfully achieved, the data set was 

excluded from the validation set to avoid interference and permit the independence of judgments. Consequently, 

according to literature [43, 44], the 70% data proportion recommended for training and 30% data proportion suggested 

for testing has been adopted in the present article.  

 

Table 2 presents the bounds for cutting speed, depth-of-cut, feed rate and immersion angle.  

 

Table 2 - The bounds of selected end milling parameters 

Parameter Minimum Maximum 

Cutting speed (m/min) 56 224 

Depth-of-cut (mm) 0.4 2 

Feed rate (mm/sec) 0.3 1.5 

Immersion angle (o) 90 360 
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The parametric settings for the BA and the PSO used in solving the proposed optimisation model are presented 

in Table 3. Based on these parametric settings, convergence plots were generated for the BA and PSO algorithms 

(Figure 9). These plots showed that the PSO algorithm converged faster than the BA algorithm (Figure 9). Furthermore, 

the computational time of the PSO algorithm is less than that of the BA algorithm. However, the BA algorithm solution 

qualities are better than the PSO algorithm (Table 4).  

 
Table 3 - Parametric settings for the solution methods 

Parameter PSO BA 

Number of iteration 100 100 

C1 and C2 1.5 and 1.2 - 

W 0.5 - 

 and   - 0.9 and 0.9 

Particle size 30 - 

Number of bats - 30 
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Fig. 9 - Convergence plots for the meta-heuristics 

 
Table 4 - Analysis of the PSO and BA algorithm fitness results 

Algorithm 

Time (sec)  Maximum 

 Value 

Minimum 

value 

Average  

Value 

Confidence level  

at α = 99% 

PSO 149.07 4961.85 4582.27 4594.16 2596.20 - 6156.47 

BA 256.05 4924.14 1245.29 1865.41 1134.62 - 3031.85 

 
The results obtained from using the BA and the PSO algorithm in solving the developed mathematical model for the 

minimisation of surface roughness and machining time are presented in Table 5. 

 
Table 5 - Optimal value for the selected ending milling parameters 

Parameter PSO BA 

Surface roughness (μm) 1.68 0.78 

Machining time (min) 1.28 2.46 

Depth-of-cut (mm) 1.21 0.87 

Feed rate (mm/sec) 0.86 0.99 

Cutting speed (m/min) 112 105 

Immersion angle (o) 108 110 

 
       The decision to predict surface roughness and machining time using different ANN models are to ensure that the 

differences between experimental and predicted values for either surface roughness and machining time are extremely 

low. The number of training and testing data sets was 24 and 6, respectively.   A joint prediction may affect the quality 

of the ANN model produced. With low prediction errors, the values from the proposed optimisation model may be 

considered practicable to implement. The ANN model and BA algorithm are implemented using VB.Net programming 



Ighravwe et al., International Journal of Integrated Engineering Vol. 14 No. 4 (2022) p. 20-34 

 

32 

 

language on a 1.80 GHz processor, installed memory of 4.0 GB and Windows 8 pro-personal computer. However, 

existing optimisation packages like GAMS and CPLEX were not used to verify the quality of the solution from the BA 

and PSO because of the difficulty in integrating the generated non-linear equations from the developed ANN model 

into optimisation package (GAMS or CPLEX). Furthermore, the work has been based on the design of experiments 

(DOE) and specifically, the Taguchi approach is used in complement with predictive models (surface response method 

and ANN) and optimisation (linear and non-linear) model to fully understand the interrelationships among machining 

parameters.  

      Figures 5 to 8 verify the use of ANN as a suitable predictive model for surface roughness and machining time 

predictions using end milling datasets (R2 are suitable).  The values of the mean (μ) and standard deviation (σ) for 

surface roughness and machining time are used in fixing the values of 1  and 2  for surface roughness and 

machining time, respectively. At 1σ from the μ (i.e., μ - σ), the values for 1  and 2  are 1.82 μm and 2.13 min, 

respectively. The fixing of the numbers of σ from μ should be done with due consideration to the CNC process 

capability. Since product quality is assumed to be more important than the machining time requirement in the 

production system, according to customers’ demand, then a decision maker is faced with two causes-of-actions: to 

assign equal weights to surface roughness and machining time (i.e., w1 = w2), and to assign surface roughness objective 

a higher weight value than the machining time (w1 ≥ w2). Both options are considered here (for the first cause-of-action, 

the left-hand side of Equation (3) will be equal to 1). For the second cause-of-action, it was assumed that the maximum 

weight for surface roughness objective should be 0.7 (i.e. the right-hand side of the equation will be 2.33). Equations 

(29) and (30) were used for the confidence interval of the BA and PSO algorithms [45]. 
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where S, e and σ represent confidence interval, mean value and standard deviation of an algorithm solution, 

respectively.  

      The optimal value for 1  and 2  using the PSO algorithm as a solution method are 0.8816 and 0.8088, 

respectively, while 0.557 and 0.443 are obtained as the optimal value of 1w  and 2w , respectively. The results generated 

for the proposed model using BA as a solution method yield optimal values of 0.275 and 0.178 for 1  and 2 , 

respectively, while the optimal values for 1w  and 2w  are 0.681 and 0.319, respectively. The variation in the values 1w  

and 2w  obtained using the BA and PSO parametric settings may be attributed to the differences in the optimal values 

for surface roughness and machining time. Based on the assumption that surface roughness objective is more important 

than machining time, it can be inferred that the BA solution is superior to the PSO solution. Furthermore, the large 

value of machining time in Table 5 has direct relationships with the low values of cutting speed and depth-of-cut those 

are obtained from the BA solution.  
       This work reveals certain novel features. First, it builds up an optimisation structure that offers interfaces among 

the significant parameters of the bi-objective weighted fuzzy goal programming model and enhances the surface 

roughness by reducing the roughness parameter while reducing the machining time for processing the work-piece. 

Consequently, this paper advances machining practice since the presented framework can offer valuable budgetary 

information for end milling machine. It thus aids production planning and control and machining cost monitoring. 

Furthermore, the work has unique features of bats and particle orientations. The advantage of building up new 

knowledge in machining practices related to the capture of uncertainties. Also, the work uses the new framework of 

FGP-BA as well as FGP-PSO for end milling for the first time. 
 
Model Validation  

In this article, the term model validation is viewed as an activity of confirming that the output of the models proposed is 

acceptable regarding the real data-creation process. Consequently, the artificial neural network model was validated by 

using the data produced in Prajina [29]. The developed mathematical model for experimental and predicted values of 

surface roughness and machining time using testing datasets are given as:  

 

y = 1.5067x - 0.3877       (29) 

and   y = 1.0701x + 0.4345       (30)  
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respectively. But values could be generated based on Equations (29) and (30) and compared with the training data (last 

30% of total data), which is present in experimental trails no. 23 to 30, the correlation could then be obtained for the 

relationship. Consequently, new data were generated using Equations (29) and (30) while X varies from 0.5 to 4 as 0.5, 

1, 1.5, 2, 2.5, 3, 3.5, and 4, respectively. For Equation (29), which represents the surface roughness expression, the 

progressive values (predicted) obtained ranged from 0.36565 to 5.6391. However, the counterpart values of the surface 

roughness based on experimental trials 23 to 30 offered values that ranged from 0.9 to 2.1. The values are correlated 

and a value of -0.62131, which is relatively acceptable. For Equation (30), which represents the machining time, the 

progressive values (predicted) obtained ranged from 0.96955 to 4.7149. Nonetheless, the counterpart values of the 

machining time based on experimental trials 23 to 30 provided values that ranged from 0.89 to 2.92. The values are 

correlation and a value of 0.569884, which is weaker than the correlation obtained for surface roughness. However, this 

value exceeds 50% and could be said to be acceptable. Thus, the ANN model has been validated.  

 

4.     Conclusions  

 
      In this study, BA and PSO algorithms were innovatively applied to surface roughness and machining time using a 

weighted fuzzy bi-objective optimisation and literature data. The optimum value for surface roughness is given by bat 

algorithm and hence the ANN-BA model is recommended for surface roughness. Besides, the optimum value for 

machining time as obtained by the PSO algorithm as ANN-PSO, therefore, revealing that the ANN-PSO algorithm is 

suitable for optimizing the process parameters. In the present investigation, a new methodological framework has been 

developed and tested for the end milling process optimisation. There is a concurrence of the literature data with the 

predictions. Further studies can be carried out using other meta-heuristics (colliding bodies optimisation, big-bang big-

crunch algorithm) when applying the proposed model using a different set of data. The proposed model shows that it 

can be used in addressing the problem of weight assignments for different objectives during end milling operations.  
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