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1. Introduction 

Hardened D2 steel (above 55 HRC) stands under extremely hard material and it comes under difficult to cut 

category since the conventional machining process experienced lots of challenges [1]. The major challenges under dry 

cutting of hardened steel are the higher tool wear, poor quality of finish, higher cutting forces, higher specific energy 

Abstract: Nowadays hard turning is noticed to be the most dominating machining activity especially for difficult 

to cut metallic alloys. Attributes of dry hard turning are highly influenced by the amount of heat generation during 

cutting. Some major challenges are rapid tool wear, lower tool-life span, and poor surface finish but simultaneously 

generated heat is enough to provide thermal softening of hard work material and facilitates easier shear 

deformation thus easy cutting. Also, plenty of works reported the utilization of various cooling methods as well as 
coolants which successfully retard the intensity of cutting heat but this leads to additional cost as well as 

environmental and health issues. However, still, there is scope to select proper cutting tool materials, its geometry, 

and appropriate values of cutting parameters to get favorable machining outcomes under dry hard turning and 

avoid the cooling cost, environmental, and health issue. Considering these challenges, current work utilizes PVD-

coated (TiAlN) carbide insert in dry hard turning of AISI D2 steel. The multi-responses like tool-flank wear, chip 

morphology, and chip reduction coefficient are considered. The amalgamation of input processing variables must 

be optimum for the effectual performance of hard to process materials turning.  Generally, the Fuzzy logic 

hypothesis represents the uncertainties co-related with fuzziness, and deficiency in the data concerned with the 

problem. Further, to achieve the best combination of input cutting terms, grey-fuzzy hybrid optimization (Type I 

and Type II) is utilized considering the Gaussian membership function. Type II grey-fuzzy system attributed to 15 

% less error (between GRG and GFG) compared to Type I. Hence, Type II grey-fuzzy system is utilized to get the 

optimal set of input terms. The optimal combination of input terms is found as t-1 (0.15 mm), s-4 (0.25 mm/rev) 
and is Vc-2 (100 m/min) which is comparable to the results obtained under spray impingement cooling using CVD 

tool in the literature. However, hard turning can be assessed under the dry condition with a PVD tool at the 

obtained optimal input condition for industrial uses. Further, six different types of cascade-forward-back 

propagation neural network modelling is accomplished. Among all models, CFBNN-4 model exhibited the best 

prediction results with a mean absolute error of 2.278% for flank wear (VBc) and 0.112% for the chip reduction 

coefficient (CRC). However, this model can be recommended for other engineering modelling problems. The 

outcomes of this research may be of immense importance to the tool manufacturers and machining industry. 
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consumption, etc. which leads to higher tooling cost thus costlier machining. But simultaneously, dry machining is very 

favorable because of the generation of sufficient amount heat which attributed the thermal softening of hard work 

material and facilitates easier shear deformation thus cutting phenomena easier [2].  

Turning of hardened steel (> 45 HRC) is called as hard turning [3-4]. Earlier days, grinding process is commonly 

implemented to machine hardened steel but since recent years, hard turning process successfully swapped the grinding 

process due to numerous benefits like lesser energy utilization, relatively very higher metal removal rate, lower 
machining expenditure per piece, flexible for interrupt machining, relatively low tool inventory, no need of coolant thus 

disposal and maintained of coolant not required. Also, the hazardous issue is completely avoided through dry cutting. 

In recent years, near dry machining becoming popular but it leads to extra cost. Thus, there is always scope to select 

proper cutting tool and tool geometry to get the favorable requirements of machining and avoid the cooling and 

lubrication cost in machining.  Since three decays, various cutting tools like CBN, PCBN, PVD coated carbide, CVD 

coated carbide, ceramic, cermet, and uncoated carbide were implemented in hard machining concern [5-6]. The CBN 

and PCBN tools were exceedingly utilized in hard metal machining due to their high resistance ability against abrasive 

wear, chemical diffusion wear [7]. The ceramic tool attributed the extensive tool life and reduced cutting forces relative 

to PCBN tool and tool failure occurred due to the dominancy of abrasion, diffusion and adhesion phenomena during 

AISI D2 machining [8]. The PCBN tool can be preferable over carbide tool due to its delayed wear growth in turning of 

D2 steel [9]. The cutting temperature noticed to be a key factor towards rapid tool wear of PCBN tool and it was 

leading due to rise in cutting speed and feed but cutting speed was more dominant than feed [10]. Abrasion and 
grooving mode of wears were identified as the main tool failure mechanisms. An abrasion phenomenon was more 

dominant due to the hard elements associated with D2 steel [11]. Saw tooth pattern on the edge of chips in orthogonal 

machining of AISI D2 hard steel was traced due to crack propagation of quenched structure of material. Also, chips 

became soft and ductile at elevated speed machining which attributed the chip segmentation and look like saw tooth 

design on chips [12]. During machining, a tribo-film at friction surfaces induced that directly influenced the tool life of 

ceramic insert in hard machining of D2 steel [13]. The wiper geometry of ceramic cutting insert attributed the superior 

quality surface compared to conventional geometry insert [14-15]. The machined surface quality was impressively 

dominated by depth of cut, followed by longitudinal feed and cutting speed [16-17]. TiC coated tool had the higher 

wear resistance capability compared to TiN coated during the turning of D2 and D3 steel [18]. The smooth growth in 

the wear of coated tools compared to the uncoated and wearing region was localized on to tool-nose [19]. The effects of 

cutting heat on to the finish surface integrity, tool-life and dimensional precision in machining on AISI 4340 steel with 
PVD and CVD coating cutting tool was studied. Speedy wear followed by catastrophic tool-breakage was foremost for 

the PVD tool while the gradual development of wear was perceived for the CVD tool [20-21].  

Some of the researchers have evaluated the machining performance of hardened steel. Panda et al. [22] contributed 

the modeling and optimization of cutting force, surface roughness, and tool wear during hard turning of D3 steel with 

mixed ceramic tool. The response surface methodology followed by genetic algorithm and particle swarm optimization 

have been used for multiple response output optimizations.  Panda et al. [23] performed machining performance, 

development of mathematical models, multiple-output response parametric optimization, computation of life of the 

cutting tool, through cutting of AISI 4340 hardened steel under dry environment using TiN coated mixed ceramic 

inserts.  Panda et al. [24] performed machining performance, development of mathematical models, multiple-output 

response parametric optimization, computation of life of the cutting tool, through cutting of AISI 4340 hardened steel 

under dry environment using TiN coated mixed ceramic inserts. Das et al. [25] performed hard part turning process 

using untreated and cryo treated cermet inserts under dry machining situation. It was suggested that tempered uncoated 
deep cryo treated cermet cutting tool outperformed enhance results in comparison to other type of cermet inserts. 

Anand et al. [26] performed the review analysis on machining and performance characteristics for improvement of 

hardened steels during hard part turning applicable in mold, die making, and die making enterprises. 

Selection of optimal dry turning, parameters is greatly imperative to get a lower wear rate and good quality of 

finish. Numerous optimization techniques have been used in hard turning problems to obtain the optimal set of cutting 

parameters. Conventional multi-attributes optimization methods like Grey, TOPSIS, WPCA, etc. and soft computing 

optimization techniques like particle swam, fuzzy, ANN, etc. were utilized in dry turning. Nowadays, researchers are 

giving more emphasis on hybrid or mixed optimization approach that comprises of conventional and soft computing 

techniques. Grey-Fuzzy the concept was found to be a fast and efficacious technique in the field of machining [28]. 

According to Suresh et al. [29], the grey-fuzzy algorithm offered an improved grey-fuzzy-grade with minimal deviation 

in output compared to the grey technique. Hong and Chiang [27] utilized the Grey-Fuzzy concept to the optimization of 
the turning process and found a great enhancement in the requisite performance index. Krishnamoorthy et al. [30] 

accomplished the drilling operation using grey-fuzzy techniques and the obtained results proposed that the quality of 

produced holes was importantly improved. Das et al. [31] also found a significant gain in grey-fuzzy grade compared to 

grey relational grade hence it was purposed the grey-fuzzy concept will be efficaciously utilized for the optimization 

problem.   

 In the past research study, it was found that the dry hard cutting condition is mostly carried using CBN, PCBN, 

Ceramic, coated carbide (CVD), uncoated carbide inserts. Rarely investigation reported the application of PVD-coated 

carbide insert in hard turning of AISI D2 steel. In addition, the application of coolant and its delivery instruments 
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attributed the additional cost in total machining cost. However, dry cutting technology needs to be more elaborated to 

meet the industrial requirement of low budget machining. Furthermore, implementation of grey-fuzzy based hybrid 

approach with aforesaid cutting conditions is rarely performed. In light of the foregoing reasons and to get the desired 

optimal setting for cutting input parameters, a grey-fuzzy-based hybrid approach found to be a more efficient tool, 

hence it is utilized in the current work to get the best combination of input terms. Keeping this in view, a careful 

experimental investigation and optimization is therefore necessitated.   

In the current paper the research gap has been identified followed by the objectives regarding to the related 

literature review. Further, the next section is described with materials and methods in section 2. The machinabilty 

indicators are tool flank wear, chip reduction coefficient and microphotography of chips On the basis of 

experimentation performed the results and discussions are illustrated in section 3. The grey fuzzy optimization 
approach is provided in section 4. Furthermore section 5 is described regarding cascade ANN modeling. At last, the 

conclusions of this research work and future outlook are delineated in Section 6. 

 

2. Materials and Methods 

The current hard turning experiments are accomplished considering L16 Taguchi design where the number of the 

input variables is 3 and their levels are 4. The input terms are depth of cut (t (mm) = 0.15, 0.25, 0.35 and 0.45), feed (s 

(mm/rev) = 0.1, 0.15, 0.20 and 0.25) and cutting speed (vc (m/min) = 50, 100, 150 and 200). Hardened AISI D2 steel 

bar (ϕ 45mm x L175 mm) of hardness 55 HRC is chosen for the investigation due to its diverse application in the 

automobile sector, tooling industries, etc.  JYOTI make DX 200 4A CNC Lathe is utilized for the turning experiments. 

The cutting range of input parameters were finalized on the basis of trial runs, experience, and knowledge found in 

extensive literature review relating to hard part turning and cutting tool manufacturer’s catalogue [32].  PVD applied 

TiAlN cemented carbide (CNMG 120408) insert with a rhombus shape with an 80° angle and 0.8 mm nose radius 

supplied by WIDIA is used for the experimentation. PCLNR2525 insert holder is utilized to screw the inserts. The new 

edge of the insert is used for each experiment. Flank wear (VBc), chip morphology and chip reduction coefficient 
(CRC) are studied with the help of images drawn by Olympus to make optical microscope and chip thickness measured 

through the digital caliper. MINITAB 17 is utilized for ANOVA and main effects plot while MATLAB R2013a is 

utilized for grey-fuzzy hybrid optimization of the cutting responses. Graphical presentation of entire work is displayed 

in Fig.1. 

 

 
 

Fig. 1 - Graphical presentation of entire work 

 

3. Results and Discussions 

The L16 [33] set of turning parameters, flank wear (VBc), chip reduction coefficient (CRC) and chip morphology 

results are located in the Table 1.  
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Table 1 - Measured results data 

Test 

No. 

t s vc VBc 

mm 

CRC = 

a2/Sinϕ 

          Chip morphology 

mm mm/rev m/min Shape Colour 

1 0.15 0.1 50 0.020 1.907 Helical Metallic 

2 0.15 0.15 100 0.023 1.806 Helical Metallic 

3 0.15 0.2 150 0.028 1.656 Helical Metallic 

4 0.15 0.25 200 0.052 1.525 Broken ‘c’ and ‘e’ type Blue 

5 0.25 0.1 100 0.024 2.042 Helical Metallic 

6 0.25 0.15 50 0.026 1.873 Helical Metallic 

7 0.25 0.2 200 0.061 1.706 Helical Blue 

8 0.25 0.25 150 0.037 1.606 Helical Metallic 

9 0.35 0.1 150 0.064 2.062 Helical Metallic 

10 0.35 0.15 200 0.093 1.862 Broken c type Blue 

11 0.35 0.2 50 0.028 1.957 Broken ‘c’ and ‘e’ type Metallic 

12 0.35 0.25 100 0.030 1.806 Broken ‘c’ type Metallic 

13 0.45 0.1 200 0.161 2.000 Broken ‘c’ type Blue 

14 0.45 0.15 150 0.083 1.940 Helical Blue 

15 0.45 0.2 100 0.030 1.932 Broken ‘c’ type Metallic 

16 0.45 0.25 50 0.038 1.967 Broken ‘c’ type Metallic 

 

3.1 Wear Analysis 

When the coating is gradually removed from the cutting insert, the tool tips still collapse within a few times when 

the coating is removed. As a result, understanding the mechanisms in relation with tool wear is vital to enhance the 

machining responses in the most of the challenging issues in the industrial applications. In hard turning process, an 

observable fact of tool flank wear is on cutting tool flank face. Tool flank wear has important significance in the hard 

part turning and is considered as life of the tool criteria. The flank wear is impacted by cutting tool geometry, 
machining parameters, and Flank wear is influenced by tool geometry, cutting parameters, and work piece-tool 

characteristics. The harder work surface can result in the additional serious abrasive wear on the flank face of the 

cutting tool.  In general, built up Edge (BUE) caused by the adhesive wear mechanism happened on the cutting tools 

under all machining conditions [34].   Cutting temperature at the tool work interface zone is increased due to 

accelerated cutting speed. Therefore, due to enhancement of cutting speed, chemical wear becomes a prominent wear 

pattern accelerating weakening the tool tip resulting in tip breakage (chipping) [35]. In today’s competitive scenario, 

industries are very much concerned about tooling cost and it should be low. Tooling cost depends on the number of 

work piece machined by a single tip of the tool. However, tool tip wear analysis is essential in hard turning. In the 

current work, tool-flank wear is analyzed based on the worldwide acceptable limit of wear width (VBc) = 0.3 mm [36].  

Wear results as shown in Table 1 are identified under the limit of 0.3 mm i.e. the selected tool and input parameters 

ranges are well acceptable for hard turning purpose. The obtained results are also comparable with results obtained in 
spray cooling condition by CVD tool [28] and the results obtained by ceramic tool under dry scenario [5]. Graphical 

plot (Fig. 2) confirms that the tool-flank wear increasing with depth of cut while beyond 100 m/min of cutting speed, 

wear width steeply elevating whereas up to 0.2 mm of feed, wear width reduces sharply and beyond it, wear width 

increases. Numerically, for each depth of cut, wear width is increasing with the cutting speed (vc) i.e. the cutting speed 

is the most foremost term towards tool-flank wear and it is confirmed by ANOVA (Table 2) report as the impact of 

cutting speed on VBc was topmost (54.06 %). Similar findings were noticed by several researchers [37-38]. The 

ANOVA analysis is performed at a confidence level of 95% (i.e.5%    significance level) [39]. Impact of depth of cut 

(26.04 %) is also considered because of the generation of higher radial force during cutting while the negative effect of 

feed on VBc (almost sharp decrement in VBc with leading feed) confirms that the PVD tool can be suitable to machine 

the hard work piece at higher feed rate.  

The Tool-wear mechanism is highly essential to understand the tool failure mechanism. Abrasion, micro-chipping, 

chipping, sever chipping (tool-tip lost) and built-up edge are the mechanism identified on the tool tip as shown in Fig. 
3. Several works reported that the abrasion is most dominating in nature during machining of hard materials due to 

continuous interaction of the continuous chips (contain hard elements) with a tool-flank face [40]. Further, as hot 

continuous chips is interact with the smooth and clean surfaces of tool tip, a bond between chip-tool develops called as 

built-up edge (BUE) as noticed in run 11 (Fig. 3(c)). Further, with the progress of machining, this BUE removed along 

with parent layer of tool as result micro-chipping and chipping phenomena attributed on to the tool tip as shown in Fig. 

3f-h. This micro-chipping/chipping makes the cutting-edge interrupt which affects the surface quality. Also, elevated 

cutting temperature at highest speed cutting condition (200 m/min) attributed the sever chipping or some instant tool-tip 

gets lost as shown in Fig. 3(h).  
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                   Fig. 2 - Graphical representations of effects of input terms on flank wear (VBc) 

 
Table 2 - Estimation of impact of input terms on VBc by ANOVA 

Basis DF Seq SS Adj MS F P % impact Comments 

t 3 0.005350 0.001738 6.80 0.023 26.04 Significant 

s 3 0.002510 0.000836 3.19 0.105 12.22 Insignificant 

vc 3 0.011106 0.003702 14.11 0.004 54.06 Significant 

Inaccuracy 6 0.001574 0.000262     

Aggregate      15 0.020541      

S = 0.0161993   R-Sq = 92.34%   R-Sq(adj) = 80.84% 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 

Fig. 3 - Flank wear micrographs a-d) lowest vc (runs 1, 6, 11, and 16) = 50 m/min e-h) highest vc (runs 4, 7, 10 

and 13) = 200 m/min 

 

3.2 Chip Reduction Coefficient and Chip Pattern Analysis 

Chip reduction coefficient (CRC) usually indicates the machinability behavior, either it is favorable or not [41]. 

The measurement of chip reduction coefficient (ζ) is an important performance criterion, since it explains machining     
characteristics like favorable or unfavorable machining regarding specific consumption. Moreover, it is the extent of 

plastic deformation in cutting action [42] depth of cut increased to 0.35 mm beyond it CRC increases with a relatively 

slower rate. Further, while increasing feed from 0.1 to 0.25 mm/rev, CRC drastically decreases and similarly variation 

in CRC is noticed with leading speed but decrement rate of CRC was lower than feed which is confirmed through 
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impact analysis through ANOVA (Table 3), as the impact of feed (43.11 %) on CRC is about 2.54 times more than 

cutting speed (15.92%). Singh et al. [43], also found a decrement in CRC with leading feed.  ANOVA also reported 

that all the input terms significantly influence the CRC.   

 

 
Fig. 4 - Graphical representations of effects of input terms on chip reduction coefficient 

 

Table 3 - Estimation of impact of input terms on CRC through ANOVA 

  Basis DF Seq SS Adj MS F P %  impact Comments 

t 3 0.14013 0.04671 20.54 0.001 37.32 Significant 

s 3 0.16189 0.05396 23.73 0.001 43.11 Significant 

vc 3 0.05980 0.01993 08.77 0.013 15.92 Significant 

Inaccuracy 6 0.01365 0.00227     

Aggregate        15   0.37546      

S = 0.0476889   R-Sq = 96.37%   R-Sq(adj) = 90.91% 

 
During the current cutting action, each chip has possessed wavy shaped pattern (also called as saw tooth or 

segmented chips) on its edge as shown in Fig. 5. Similar observation noticed by Kumar et al., [6] under dry cutting. 

Initially, when the edge of the tool comes in contact with work piece, the closer to tool portion of material gets 

compressed due to high cutting pressure while the subsequent work portion is getting bulge. Further with the progress 

of cutting, this bulge portion tends to slip towards the free surface and takes a shape of the saw tooth.  During this 

cutting phenomenon, plastic deformation of work is transformed into heat thus thermal softening of work-material 

occurs in the primarily deformed section. Further with repetition of cycles attributed the saw tooth formation or chip 

segmentation. This segmentation significantly influences the chip cross-section thus; cutting forces fluctuates [41]. 

Chip pattern is considerably affected by level of input terms combination, with least depth of cut (0.15 mm) and till 

moderate speed and feed ( up to 150 m/min of speed and up to 0.20 mm/rev of feed) chip pattern is of helical type with 

metallic colour which ensures the favorable machining and it is confirmed by VBc values (0.02 mm to 0.028 mm) 

while at highest feed and speed (run 4), broken chips (discontinuous chips) with ‘c’ and ‘e’ in shape with blue colour 

chips produced which significantly influenced the machining performance and it is confirmed as relatively higher VBc 

value (0.052 mm) is achieved at this condition. Similarly, in other test runs, broken chips (runs 10, 12, 13 and 15) are 

noticed with moderate to largest feed (0.1 to 0.35 mm/rev) and highest cutting speed (150 to 200 m/min) conditions. In 

run 11 and run 16, although the speed is least (50 m/min) feed values are higher (0.2 and 0.25 mm/rev) which attributed 

the broken chips formation. Helical pattern chips (Fig. 5 and Table 1) attributed the favorable machining. Blue colour 

chips denoted the higher heat generation compared to other machining tests where metallic chips produced. Similar 

illustration reported by [43].  
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Fig. 5. Different patterns of chips 

 

4. Grey-fuzzy Optimization 

The fuzzy system provides an enhanced GRG which confirms the lesser uncertainty in output relative to the grey 

process. Due to this, nowadays the grey-fuzzy logic was popularly utilized in various engineering applications [44-45].  

The details of grey and fuzzy system are as follows:  

 

4.1 Grey Relational Analysis (GRA) 

The Grey analysis’s main objective is to optimize the data set’s process parameters, developed by Professor Deng. 

Also, this analysis establishes a relationship between the desired and actual experimental data. In the present study, the 

Grey analysis gives the optimum level of inputs and outputs data, and according to these data, we minimize the various 

machine parameters. Moreover, this Grey analysis’s main advantage is that it can provide more excellent optimum 

value in less dataset [46]. Grey concepts offer competent management on the discrete, uncertainty and multi-input data 

[30].  The GRA measures the absolute value of the data difference between sequences. It is also utilized to provide a 

close correlation among sequential data [24-25]. Many works were reported the effective utilization of GRA for 

analysing the co-relation among sequences for a smaller number of data [47-48]. 

The following steps were utilized to conduct the GRA analysis [49-50]: 

 

Step-1 Normalize the flank wear and chip reduction coefficient experimentally measured data in the range of 0 to 1   

taking lower is better concept. This process is called grey relational generation. 

 

Step-2 Estimation of grey relational coefficient (GRC) for all the outputs. 

 

Step-3 Estimation of grey relational grade (GRG) by taking the average of respective GRC.  

 

Step-4 Estimation of mean GRG taking each factor with their levels. 

 

Step-5 Selection of optimal levels of input cutting terms. 

 

Step-6 Analyse experimentally measured output data using GRG and ANOVA 

 

The equations to estimate the terms linked to Steps-1 to 3 are listed in Fig. 6 and the calculated data is listed in Table  

 4.  
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Fig. 6 - Steps to estimate the grey relational grade (GRG) 

 

Table 4 - Estimation of grey relational grade (GRG) 

 Normalized value Grey relational coefficient Grey relational grade  

No

. 

VBc CRC GRC-VBc GRC-CRC GRG Rank 

1 1 0.2886 1 0.4128 0.7064 5 

2 0.9787 0.4767 0.9592 0.4886 0.7239 4 

3 0.9433 0.7561 0.8981 0.6721 0.7851 3 

4 0.7730 1 0.6878 1 0.8439 1 

5 0.9716 0.0372 0.9463 0.3418 0.6441 8 

6 0.9574 0.3520 0.9216 0.4355 0.6785 7 

7 0.7092 0.6629 0.6323 0.5973 0.6148 11 

8 0.8794 0.8492 0.8057 0.7682 0.7870 2 

9 0.6879 0 0.6157 0.3333 0.4745 13 

10 0.4823 0.3724 0.4913 0.4434 0.4674 14 

11 0.9433 0.1955 0.8981 0.3833 0.6407 9 

12 0.9291 0.4767 0.8758 0.4886 0.6822 6 

13 0 0.1155 0.3333 0.3611 0.3472 16 

14 0.5532 0.2272 0.5281 0.3928 0.4605 15 

15 0.9291 0.2421 0.8758 0.3975 0.6366 10 

16 0.8723 0.1769 0.7966 0.3779 0.5873 12 

 

4.2 Fuzzy Logic 

Grey theory works on three basic rules namely lower the better, nominal the better and higher the better. But still, 

some level of uncertainty is associated with the acquired results.  This uncertainty can be efficaciously curbed through a 

fuzzy concept [44]. However, a fuzzy logic of multi-attributes was developed and popularly known as grey-fuzzy logic. 

The optimization function can be executed on a single response called a grey-fuzzy grade in spite of complex multi-

responses.  

The fuzzy system includes a fuzzifier, a membership function, rule inference, an inference engine, and a 

defuzzifier. In the initial step, fuzzifier utilize the membership function to fuzzify inputs (GRC-VBc = grey relation 

coefficient for flank wear, and GRC-CRC = grey relation coefficient for chip reduction coefficient) as mentioned in 

Table 4. Membership function defines the mapping of inputs (GRC-VBc and GRC-CRC) and output (GFG) in the 

range of 0 to 1. Matlab (R2013a) fuzzy tool box is utilized to get the grey-fuzzy-grade. In the literature, many type of 
membership functions like Gaussian, trapezoidal, sigmoidal, and triangular have been used. Among them Gaussian 

membership function is outperformed. However, the current work utilized the Gaussian membership function.   Further, 

two types of grey-fuzzy logics are utilized based on number of membership function. In Type-I, membership function 

for inputs and output is same and equal to five [VL = very low, L = low, M = medium, H = high and VH = very high] 

while in Type-II, membership function for input is five [VL = very low, L = low, M = medium, H = high and VH = 

very high] and for output it is seven  [VVL= very low, VL = very low, L = low, M = medium, H = high, VH = very 

high and VVH = very high]. The membership graph for input and output is displayed in Fig. 7 and Fig. 8 respectively. 

Type 1 consists of 13 distinguish rules and Type II carries 15 distinguish rules as mentioned in Table 5.  Further, the 
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grey fuzzy grade data is defuzzified. Many defuzzification techniques namely centroid methods, weighted average 

method, mean-maximum membership method, and maximum-membership method were found in literature. Out of 

them, centroid techniques were most prevalent. However, current work uses centroid based defuzzification to get the 

crispy data [29]. Further, the rules viewer of test-4 for Type I and Type II are displayed through Fig. 9 and Fig. 10 

consequently. In rule viewer figures (Fig. 9 and Fig. 10), rows denote the number of membership function rules, 1st and 

2nd column represent input terms (i.e. GRC for experimental measured data of VBc and CRC) and 3rd column represent 

output i.e. defuzzified value in term of GFG (grey fuzzy grade).   

 
(a) 

 
(b) 

Fig.7 - Membership function graphs of Type I and Type II for inputs a) GRC-VBc and b) GRC-CRC 
 

 
(a) 

 
(b) 

Fig. 8 - Membership function graphs of output grey-fuzzy grade (GFG) for (a) Type 1 (b) Type II 
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Table 5 - Membership functions for Type I and Type II fuzzy system 

 Type-I  Type-II 

No. GRC-VBc GRC-CRC GFG No. GRC-VBc GRC-CRC GFG 

1 VH L H 1 VH L H 

2 H M VH 2 VH L VH 

3 M VH VH 3 H M VH 

4 VH VL M 4 M VH VVH 

5 VH L M 5 VH VL H 

6 M M M 6 M M M 

7 H H VH 7 H H VH 

8 M VL M 8 M VL L 

9 L L L 9 L L L 

10 H VL M 10 H VL H 

11 H L H 11 H L H 

12 VL VL VL 12 VL VL VVL 

13 L VL L 13 L VL VL 

    14 H VL H 

    15 H VL M 

 

 
Fig. 9 - Fuzzy rules viewer of Type I (Exp. No. 4) 
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Fig. 10 - Fuzzy rules viewer of Type II (Exp. No. 4) 

 

Further, with the help of rules viewer, the GFG data of all experiments for Type I and Type II are estimated and 

listed in Table 6. Also, the obtained data of GFG is compared with GRG and displayed graphically through Fig. 11. 

Further, the error (absolute) between GRG and GFG has been estimated using the Eq. 1 [51] and noted in Table 6. The 

mean absolute error between GRG and Type I-GFG is estimated at 4.731% while it is 4.016% for GRG and Type II-
GFG. Type II GFG contains 15 % less error compared to Type I, hence to get the optimal condition, Type II GFG data 

has been taken.  

 

( )
( )% 100

GRG GFG
Mean absolute error MAE

GRG


  

                                                                                     (1) 

 

Further, to estimate the optimal combination, mean GFG (Type II) is estimated for each factor and each level and 

displayed in Table 7. Higher mean value for level of each parameter represents the optimal level of input variables. 

However, the optimal parametric combination is found as t1-s4-vc2. Further, surface plots (Fig. 12) displayed the 

influence of input terms on GFG. Higher GFG is noticed at moderate VBc and higher CRC values. ANOVA (Table 8) 

was utilized to estimate the most contributing input factor for the GFG. From ANOVA (Table 8), depth of cut (t) 

contributed the highest (51.7%) followed by feed (26.57%) and speed (16.37%) on GFG. All the turning input terms 

are noticed to be noteworthy at 95% of confidence. Further, confirmatory results are obtained and found an 

improvement in GFG relative to GRG. Also, a gain in GFG from initial setting is noticed as located in Table 9. 

However, the current hybrid optimization technique can be a reliable choice towards industrial applications.  

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0.3

0.4

0.5

0.6

0.7

0.8

0.9

G
ra

de

Test No.

 Grey relational grade

 Type I - Grey fuzzy grade

 Type II - Grey fuzzy grade

 
Fig. 11 - Comparative graphs between GRG and GFG 
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Table 6 - GFG data for Type I and Type II and absolute error between GRG and GFG 

No. Experimental 

(GRG) 

Type 1 

(GFG) 

Absolute error 

(%) 

Type 2 

(GFG) 

Absolute error 

(%) 

1 0.706 0.653 7.557 0.708 0.229 

2 0.724 0.657 9.242 0.711 1.783 

3 0.785 0.757 3.578 0.751 4.342 

4 0.844 0.803 4.847 0.806 4.491 

5 0.644 0.609 5.444 0.660 2.474 

6 0.678 0.656 3.323 0.687 1.246 

7 0.615 0.569 7.451 0.580 5.662 

8 0.787 0.719 8.638 0.720 8.511 

9 0.474 0.477 0.521 0.492 3.682 

10 0.467 0.474 1.420 0.487 4.202 

11 0.640 0.632 1.357 0.658 2.701 

12 0.682 0.685 0.410 0.685 0.410 

13 0.347 0.405 16.637 0.402 15.773 

14 0.460 0.473 2.723 0.460 0.100 

15 0.637 0.639 0.372 0.654 2.728 

16 0.587 0.600 2.170 0.622 5.916 

Average absolute error 4.731  4.016 

 

        Table 7 Mean GFG and optimal level of input terms 

Inputs 
Levels of input terms   Optimal 

level L-I L-II L-III L-IV Δ=(max-min) Rank 

t 0.744 0.662 0.581 0.535 0.209 I 1st 

s 0.566 0.586 0.661 0.708 0.142 II 4th 

vc 0.669 0.678 0.606 0.569 0.109 II 2nd 

 

 

 
(a) 

 
(b) 

           

Fig. 12 - Effects of output response on Grey fuzzy grade (a) Grey-fuzzy Type I; (b) Grey-fuzzy Type II 

        

Table 8 - Contribution of input terms on GFG by ANOVA 

Terms DF Adj SS Adj MS F P Contribution (%) 

t 3 0.10230 0.03409 19.34 0.002 51.70 

s 3 0.05257 0.01752 9.94 0.010 26.57 

vc 3 0.03239 0.01079 6.12 0.029 16.37 

Residuals 6 0.01058 0.00176   05.36 

Total 15 0.19784     
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Table 9 - Optimal and predicted results 

 Initial turning parameters 

t4-s1-vc4 

Optimal turning parameters 

t1- s4-vc2 

Setting terms  Prediction Experiments 

VBc 0.093  0.024 

CRC 1.862  1.656 

GRG 0.347 0.896 0.786 

GFG 0.405 0.904 0.829 

 

5. Cascade ANN Modelling  

Cascade-forward-back propagation neural network (CFBNN) is a special version of feed-forward neural network 

(FFNN) but it comprises a connection from the input and each earlier layer to subsequent layers.  Similar as FFNN, this 

network has three distinguish layer such as input layer (each neuron representing the individual input terms, here, 

number of neurons = number of inputs = n), hidden layer (depends on selected functions rule which is based on ‘n’) and 
output layer (representing single output term). In this technique, additional connections like each input to the output 

layer attributed a faster learning speed with the desired relationship. Also, this technique exhibited the non-linear 

connection between input and output without eradicating the linear connection among the two [52—53].  

The input layer consists of three neurons ( n = 3) like depth of cut (t), feed (s) and cutting speed (Vc), the output 

layer consists of one neuron which represents the flank wear (VBc) or chip reduction coefficient (CRC). The hidden 

layer consists of different numbers of neurons. Zhang et al. [54] proposed that the number of neurons in the hidden 

layer depends on the number of inputs (n). Number of neurons in hidden layer be taken as n/2, n, 2n, n+1, n+2, 2n+1, 

2n+2 etc. However, in the current modelling work, six different models based on six different numbers of neurons 

(n=3; n+1 = 4; n+2 =5, 2n =6, 2n+1 =7 and 2n+2 =8) in hidden layers are utilized. The notation of all six models are as 

follows:  CFBNN-1 (contains 3 neurons in hidden layer), CFBNN-2 (contains 4 neurons in hidden layer), CFBNN-3 

(contains 5 neurons in hidden layer), CFBNN-4 (contains 6 neurons in hidden layer), CFBNN-5 (contains 7 neurons in 
hidden layer) and CFBNN-6 (contains 8 neurons in hidden layer). The schematic representation of the CFBNN model 

is displayed in Fig. 13. Further, R-square and mean absolute percentage error (MAE) between predicted and 

experimental data of each output, is estimated and compared. MAE is estimated using Eq. 1.  

 

 
 

Fig. 13 - Cascade-forward-back propagation neural network (CFBNN) 

 

The current work utilized MATLAB R2013a ‘nntool’ box to establish CFBNN modelling. For this, several 

functions like ‘dividerand’ for picking random distribution of data, ‘trainlm’ for training the required data ‘learngdm’ 

for learning, ‘mse’ for checking the error or performance. For training the data, epochs number, training rate, and 

gradient are taken as 1000, 0.1 and 1.00e-07 respectively [55]. Training of the developed network was repeated until 

achieve the minimum gradient level of validation. Further ‘simulation’ function is utilized to get the output predicted 

data. A comparative graph is plotted between experimental and predicted data for all types of models and displayed in 

Fig. 14. Figure 14 ensured that the predicted results for VBc and CRC are very close to experimental data for all types 

of CFBNN. Further, from MAE value (Table 10 ), CFBNN-4 exhibited the lowest mean absolute error for VBC (2.278 

%) and CRC (0.112 %) among all types of models. Also from Table 10, the R-square value for all types of models is 

close to unity but model CFBNN-4 has the highest R-square (for VBc = 0.9988 and for CRC = 0.9997) among all types 
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of models. As CFBNN-4 type of model is topmost fitted model thus it is recommended to use this model for other 

modelling works.    
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Fig. 14 - Comparative plot of experimental Vs different CFBNN modelling data (a) VBc (b) CRC 
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(a) 

 
(b) 

 

Fig. 15 - Regression graph for Type CFBNN-4 (a) VBc (b) CRC 
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Table 10 - Estimated values of MAE and R-Square 

Model type 
Flank wear (VBc) Chip reduction coefficient (CRC) 

MAE (%) R-Square MAE (%) R-Square 

CFBNN-1 (n=3) 3.466 0.9969 0.289 0.9994 

CFBNN-2 (n=4) 6.161 0.9932 0.594 0.9758 
CFBNN-3 (n=5) 2.384 0.9985 0.638 0.9494 

CFBNN-4 (n=6) 2.278 0.9988 0.112 0.9997 

CFBNN-5 (n=7) 2.464 0.9800 0.843 0.9646 

CFBNN-6 (n=8) 4.285 0.9979 0.714 0.9689 

 

6. Conclusion and Future Work 

Current work focused on the selection of optimal input conditions for dry hard turning using a Grey-fuzzy hybrid 

optimization concept. Two different types of grey-fuzzy systems were used considering the Gaussian membership 

function. Flank wear and chip reduction coefficients, and chip morphology were considered as performance criteria. 

The following major findings are reported as follows:  

 Abrasion, micro-chipping, chipping, sever chipping (tool-tip lost) and built-up edge is the wear mechanism 

identified on to the tool-tip. ANOVA study reported that the impact of cutting speed on VBc was topmost 

(54.06 %) followed by the depth of cut (26. 04 %). 

 According to ANOVA, the impact of feed (43.11 %) on CRC is about 2.54 times more than cutting speed 

(15.92%). Helical (continuous) and broken chips (c and e type) with a saw-tooth pattern are noticed in the 
entire research study. Majorly higher feed rates are more responsible to get broken chips.  

 The mean absolute error between GRG and Type I-GFG is estimated as 4.731% while it is 4.016% for GRG 

and Type II-GFG. i.e. Type II GFG contains 15 % less error compared to Type I, hence Type II GFG data has 

been taken to estimate the optimal solution. 

 The optimal combination of input terms is found as t-1 (0.15 mm), s-4 (0.25 mm/rev) and vc-2 (100 m/min) 

which is comparable to the results obtained under spray impingement cooling in the literature. Running 

confirmatory experiment results are obtained at the optimal conditions and found an effective improvement in 

GFG relative to GRG. 

 The cascade-forward-back propagation neural network (CFBNN) modelling exhibited a better result with 

maximum mean absolute error lie under 6.2% for flank wear (VBc) and 1% for the chip reduction coefficient 

(CRC). CFBNN-4 model exhibited the best prediction results with a mean absolute error of 2.278% for flank 
wear (VBc) and 0.112% for chip reduction coefficient (CRC). Therefore, CFBNN-4 model is recommended to 

use this model for other modelling works. 

The current work results can be effectively utilized in the industry in a dry environment which can completely 

eliminate the extra tooling cost as well as environmental issues thus supporting the concept of green manufacturing. In 

the future, the PVD TiAlN tool can be implemented for higher workpiece hardness (> 55 HRC) to judge the 

machinability capability. In the future work, some other hybrid approaches such as GA-PSO, ANN-PSO, and ANFIS-

PSO can be utilized for the modelling and simulation of AISI D2 Steel. 
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