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1. Introduction 

In today's era, it is too simple to share access and process data in the form of images. Traditionally we had self-

assurance in the authenticity of images, however, with the rapid growth of digital technology in terms of robust algorithms 

like Photoshop and advanced cell phone applications for modifying digital images, the question of its authenticity is 

raised. Practically, digital images are found in media networks, technical journals, governmental campaigns, courtrooms 

etc. Sometimes it is too tough to identify reliable and manipulated images. In general image forgeryis the process of 

altering the originality of digital images which is not visible to the human eye. 

Nowadays government and private organizations are concerned with paperless work like e-government services 
which requires the data to be stored in digital format. Unfortunately, several data like documents and images are all 

vulnerable to manipulations, which make challenging to secure authentic data. This gives rises to an interest among the 

researchers to develop image forensics methods towards identifying authentic digital pictures. 

Image Forgerydetection can be classified into Active Forgerydetection and Passive Forgerydetection. In Active 

forgerydetection, watermarking and digital signature which is embedded into the image is confirmed during detection to 

identify the authenticity, but this technique has limitations because they require human involvement or special cameras. 

To overcome these limitations, various passive authentication methods are used. 
A passive method does not require previous data about the images, and this method takes assistance from specific 

noticeable differences that forgeries can bring into the image. In the passive approach detection of forged images is done 

without the knowledge of the original image. The evidence or traces left on the image during image manipulations are 

used for the detection of forgery. The amount of forgeryand position of forgeryin the image can also be determined with 

a passive approach. 

Two subtypes of Image forgeryare Image Splicing and Copy-move forgery. The process of creating an amalgamated 

image by cutting a few picture areas and pasting them to different pictures is called Image Splicing.

Abstract: With the growing usage of the internet in daily life along with the usage of dominant picture editing software 

tools in creating forged pictures effortlessly, make us lose trust in the authenticity of the images. For more than a 
decade, extensive research is going on in the Image forensic area that aims at restoring trustworthiness in images by 

bringing various tampering detection techniques. In the proposed method, identification of image splicing technique 

is introduced which depends on the picture texture analysis which characterizes the picture areas by the content of the 

texture. In this method, an image is characterized by the regions of their texture content. The experimental outcomes 

describe that the proposed method is effective to identify spliced picture forgery with an accuracy of 79.5%. 
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Compared to Copy-move forgery, image splicing is difficult to identify because in the Image Splicing technique 

dissimilar objects are included along with the dissimilar texture and in Copy-move Forgery, it is simple to identify because 

of the same objects along with similar texture in the same picture. 

Figure 1(c) represents a spliced picture that shows John Kerry and Jane Fonda at an anti-war. In the period of the 

American presidential election campaign in 2004, this picture was forged by combining two original pictures. Figure 1(a) 

and Figure 1(b) represents the actual image [1]. The Image Splicing technique is extensively used for forgeryof the image, 

which contains particular adverse public impacts. 
 

Fig 1 - An example of Spliced image forgery 

 

Digital image forgerydetection techniques are classified as Pixel-based image forgerydetection, Format-based image 

forgerydetection, and Camera-based image forgerydetection, Physical environment-based image forgerydetection and 

Geometry-based Image forgerydetection. 

The pixel-based method emphasizes the pixels of an image. These methods are commonly classified as copy-move, 

Image splicing and image re-sampling. The most common image manipulation technique is Image splicing. 

The format-based method is based on image formats, in which JPEG format is desirable. For image forgerydetection, 

Statistical correlation is introduced by precise lossy compression patterns. These methods are classified as JPEG 

quantization, Double JPEG and JPEG blocking. It is very difficult to identify image forgeryif the images are compressed. 
But these methods can identify image forgeryeven if the images are compressed. 

In the Camera-based method, when an image is acquired from a digital camera, the image is sent to the memory 

through the camera sensor. It undergoes various processing stages like quantization, gamma correction, colour correlation, 

white adjusting, filtering, and JPEG compression. These processing steps from acquiring the image to saving the image in 

the memory may depend upon the camera model and camera antiques. These methods classified as chromatic aberration, 

colour filter array, and camera response and sensor noise. 

The physical environment-based method depends on three-dimensional relations between physical object, illumination 

and the camera. This method is based on the illumination under which an image is captured. Illumination is a very 

significant factor for capturing an image. Distinctions in illumination in an image can be used as proof for forgery. These 

techniques are classified as light direction (2-D), light direction (3-D) and light environment. 

The geometry-based method is based on the projection of the camera focus onto the image, hence object in the world 
and their location will be relative to the camera. Geometry-based methods are classified as principle point and metric 

measurement. 

Image Segmentation is used to identify particular entities and also to separate foreground content from background 

content. Dividing an image into a smaller number of similar regions highlights essential features. It makes the analysis of 

the image easier. Image segmentation approaches can be categorized as a region-based method and edge-based method. 

Image textures, grey values, colour values and structural features are the only option to derive information from an Image. 

Texture based analysis is used from the beginning of digital image processing. Single texture features are not suitable for 

texture segmentation because of different viewing conditions, illumination conditions and shadows. Hence image 

segmentation analyses are carried out using couples of texture features. 

The other sections of this paper are arranged as below: In section-2, Image texture, Section-3, Related Work of Image 

Forgerydetection techniques, section-4, a summary of Proposed Method, section-5 Experimental Results and section-6 
conclusion. 

 

2. Image Texture 

A texture is a group of texture components or “texels” that are present in some patterns in an image. Image Texture 

gives information about the arrangement of intensities or colour in the spatial domain. Segmentation of an image can be 

done by using image texture. Image texture detects different textured and non-textured regions in an image to categories 
or segment different texture regions in an image and to extract boundaries amongst the texture regions. It is a very 

challenging concept to characterize the Image Texture. Modelling the texture as a two-dimensional gray level 
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distinction is used for the identification of specific textures in an image. The illumination of pairs of pixels is calculated 

as the amount of contrast and consistency. Figure 2 represents segmented into different texture regions. 

 

 

Fig 2 - Example of Image texture Segmentation 
 

Image texture analysis methods are classified as Structural method, statistical method, model-based method and 

transform method. 
The structural method characterizes texture by its primitive which is known as micro-texture and also by spatial 

arrangements which are known as macro-texture of those primitives. To describe image texture, the primitives must be 

defined. The chosen primitive and its probability to be positioned at a specific location in an image is the function of 

location or the primitives near that location. The structural approach provides a good figurative description of an image 

but, this method is more suitable for the synthesis of the image than an analysis of the image. The abstract descriptions 

cannot be properly defined for natural textures because of the inconsistency in both micro-texture and macro-texture. 

Mathematical morphology is one of the tools for structural texture analysis. 

The statistical method is used to characterize the texture indirectly by non-deterministic properties of the gray levels 

of an image. The information provided by the pairs of pixels achieves more discrimination rates than the transform-based 

approach and structural approach. The textures in gray images distinguish only if they differ in second-order moments. 

The co-occurrence matrix is the most popular second-order statistical feature for texture analysis. For texture classification, 

the approach based on co-occurrence matrices has good performance than the transform-based method. 
The model-based method uses fractal and stochastic models. This method represents an image texture by using an 

image model and a stochastic model. The image is analyzed by estimating and using the parameters of the model. The 

major problem of this method arises in the computational complexity of the estimation of stochastic model parameters. For 

modelling natural textures, a fractal model is more useful. It can be used for texture analysis but it is not appropriate for 

the identification of local image structures and it lacks location selectivity. 

The transform method is used to characterise an image in a space whose co-ordinate system is closely related to the 

characteristics of a texture such as frequency or size. The performance of methods based on the Fourier transform is very 

poor due to the absence of spatial localisation. For better spatial localization, Gabor filters can be used but, practically they 

are less useful because in natural textures generally there is no single filter resolution that can localise a spatial structure. 

Wavelet transform has many advantages compared to Gabor transform. Wavelet transform allows the representation of 

textures at the most suitable scale by changing the spatial resolution. There is a wide range of choices for the wavelet 
function, so the wavelets best suited for texture analysis in a specific application can be chosen. The wavelet transform is 

best suited for texture segmentation. The major issue with wavelet transform is that it is not translation-invariant 

 

3. Related Work 

To identify the introduction of the higher-order un-natural correlations as a signal by the process of forgery, Farid [2] 

gives one technique that depended on bi-spectral analysis and is developed for identifying human-speech splicing. For the 

identification of image splicing, Chang and Ng [3] presented one technique that depends on the usage of bi- coherence 

phase and magnitude characters and obtained the 70% of identification accuracy. Abrupt splicing leads to discontinuity 

which is identified by other techniques which have been introduced by a few authors and are done by using bi-coherence 

[4]. 
Tsui and Ng [5] and Ng T.T. [6] implemented one technique that utilizes “linear geometric invariants by picture and 

therefore generated the characters of CRF signature by planes linear in picture irradiance. Generation of CRF signature by 

picture, the authors implemented a technique depended on the edge profile. Here reliable generation is done depending 

on the reality that is the edges must be broad and straight. Threshold edge picture GLCM is used. For identification of 

splicing for colour pictures Wang et al.[7], introduced a technique by using a gray level co-occurrence matrix (GLCM). 

Xuefang et al.[8], introduced a technique that generates characters and a statistical model which utilizes the 

characteristic operations moments upon the use of wavelets to identify the spliced area and this is also done by Hilbert– 
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Huang transform (HHT). For the identification of passive splicing, this technic provides maximum accuracy. The method 

which measures four vectors with four directions which are provided by de-correlated chroma channels and the technique 

was implemented by Zhao et al. [9], which utilizes the gray level, run length, texture character and chroma space and above 

are used as an identical character for the division Support Vector Machines (SVM) and identification of picture splicing 

was established. 

By using photometric consistency of lights, Liu et al. [10], implemented a technique in which the value of Shadow 

Matte is utilized to calculate colour features of shadows by utilizing photometric consistency. Detection method proposed 

by Xuemin et al. [11], Image Splicing Identification technique utilizes illuminant colour inconsistency. Based on blocks 

content light colour is decided for every block, provided the picture is classified as overlapping blocks. Variation among 

the reference and predicted light colour is calculated. For division purpose threshold is utilized and the block is considered 
as a forged block when the variation is more than a threshold. 

To identifying splicing, the Run length-dependent technique is proposed by Zhongwei et al. [12]. The computation of 

run length is in the direction of the edge gradient. For a provided picture, an edge gradient dependent matrix is measured. 

By the histogram of the approximate run length, characters are formed. Therefore to increase the identification accuracy, 

run length is used upon the reconstructed and error pictures which are provided by the implementing Discrete Wavelet 

Transform (DWT) to get several characters. To divide the spliced and authentic pictures SVM is used. In Zhongwei et al. 

[13], Markov feature dependent technique is introduced. The co-efficient of Discrete Cosine Transform (DCT) is measured 

by utilizing Markov characters correlation of inter-block and intra-block between the blocks. 

SVM is implemented as a classifier and SVM-RFE is utilized to minimize the character complexity and dimension, 

de Carvalho et al. [14] introduced a technique for the identification of inconsistencies in colour picture illumination. The 

technique is suitable for a picture that consists of more than two or more people. From illuminant estimators Edge 
dependent and texture characters are generated, which are given to the approach of machine-learning. This method does 

not need professional collaboration and systematizes the method of making the decision. For identification and division, 

SVM is utilized at rates of 86% on a set of information containing 200 pictures and 83% on 50 pictures counted by the 

Internet. Rao et al. [15], introduces a detection method that is dependent on blur. By calculating inconsistencies this 

approach shows the splicing by evaluating inconsistencies in space-variant blurring situations and also in motion blur. 

Chi Man Pun et al. [16] suggested a technique based on noise inconsistencies amongst the spliced image and original 

image to detect the forged images. Initially, the image is alienated into multiple-scale pixels. The noise level function is 

calculated for every single scale and examined the portion. If the portion is lower than the level of the noise, then it is 

considered a dubious region. Finally, the pixel clusters of a dubious region are treated as the region that is spliced. The 

spliced area's variable noise concentrations show the presence of forgery. The multi-scale investigation produced the 

outcomes. This method is appropriate to identify the splicing of numerous objects.  

D Vaishnavi et al. [17] suggested a technique that works to identify the image splicing which is based on digital 
watermarking. Spliced image is formed when two images are combined. An image is considered as a forged image if the 

watermarking which will be retrieved from the image indicates the existence of certain noise. This technique is an active 

forgerydetection method.  

Using Support Vector Machine (SVM) and Hidden Markov Models (HMM) classifiers, M F Hashmi et al. [18] 

suggested the tampering identification techniques. In this method, digital images are characterized by their feature vector. 

DCT, Local Binary Patterns (LBP), multi-scale directional transform and linear filters, extract the image attributes used for 

texture analysis. The system performance is improved when the images are tested using HMM as well as SVM models and 

the outcomes got by this method obtained respectable accuracy.  

A Agarwal et al. [19] proposed a method using entropy filter and Local Phase Quantization (LPQ) that works on 

passive forgeryrecognition technique. When the images are spliced then it interrupts the fundamental information that will 

be noticed through this technique. The entropy filter gives uncertainty in the pixels in the nearby region. Hence Entropy 
filter highlights the edge of the manipulated image. The LPQ operator provides the phase statistics gives the statistic 

quantities of the image. Initially, the image is transformed from the RGB colour domain to YCbCr. Then the Cb and Cr 

constituents are obtained. Cb, as well as Cr constituents, are filtered using an Entropy filter. The feature matrix can be 

identified by assessing the image histogram by applying the LPQ operator to the filtered image. Finally, the image is 

classified as a forged or original image using an SVM classifier. Columbia, CASIA v1.0, v2.0 datasets are used by the 

author to evaluate forgeryin an image. This technique is strong enough for the forgeryof Copy-move and image splicing.  

Zenan Shi et al. [20] suggested an original blind tampering identification technique based on Run Length Matrix on 

Fuzzy LBP (RLM-FLBP). Initially, the gradient sequence of every pixel is calculated by using an edge gradient matrix for 

an image and then measured in all directions. Using each pixel's gradient direction, the fuzzy histogram, grade of variation 

the total histogram are calculated. 

Then the three instants distinguishing function of histograms are estimated and these are known as histogram 

characteristics that help identify image splicing The Fuzzy run length increases the topographies of variation calculating 
histogram to differentiate the forged and original image. 

The method discussed above has three main drawbacks. Small and classical tampering may be unidentified. For a 

reliable generation, it needs the wide necessity of wide edges. Blur identification technique is failed when calculation and 

are needed to mask the sharp edges ailments after image splicing. 
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The proposed technique depends on the picture texture analysis which characterizes the picture areas by the content 

of the texture. Some intuitive qualities have been explained by terms like hard, soft, bumpy and silky as an operation of 

the spatial difference in pixel intensities and these are calculated by texture analysis. A difference in the values of intensity 

or the levels of gray represents the roughness or bumpiness. Some applications of texture analysis are automated 

inspection and remote sensing. These are more useful when entities in a picture are categorized by their texture instead of 

image intensity. Processing of the medical picture and the detection of texture boundaries is called texture segmentation. 

 

4. Proposed Method and discussion 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 3 - Flow chart of the process 

 

 The flow chart of the proposed system is shown in Figure 3. The Proposed method is explained in the following 

steps: 

 

 Read Picture 

Read Image and convert the picture to grey from RGB. The RGB to gray function converts RGB pictures to grayscale 

(I) while keeping luminance by removing the saturation and hue message. 

 
 

I  0.2989* R  0.5870*G  0.1140* B            (1) 
\ 

Here, R refers to Red, G refers to Green and B refers to the Blue component of the RGB colour picture respectively. 

'I' indicate the Luminance component of the equivalent RGB pixel value.

START 

Read the image 

Convert to gray image  

Convert to textured image   

Rough mask creation    

Texture segmentation    

Display the Splicing Result    
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

Texture Picture Creation 

An entropy filter is used for the formation of the texture picture. Entropy value indicates the complexity present in 

neighbourhood pixels. Variation in gray level distribution can be detected by the Entropy filter. Entropy filter operation 

returns an array where every output pixel consisting of the 9-by-9 surrounding entropy value around the respective 

pixel input pictures ‘I.’ Statistical calculation of randomness is referred to as Entropy. Let the entropy filter image be 

'E'. To rescale the texture picture 'E', the mat2gray function is used. Therefore for double picture values are in the default 

range. The resulting image is ‘Eim.’ 

The classical entropy of a grayscale picture is measured by Entropyfilt operation. Statistical calculation of randomness 

refers to Entropy. Statistics are characterized by picture texture since it gives the message of the classical differentiability 

of pixels intensity value in a picture. The range of values in regions beside smooth texture is the least value around a pixel; 

in regions of rough texture, the range of values is larger. In the same way, the degree of inconsistency of pixel values in 

that region can be calculated using the standard deviation of pixels in the neighbourhood. 
 

Fig 4 - Examining values of pixel in range filtered output picture 

 
Surrounded pixel of interest defines the operation Entropy filter. It measures the surrounding statistic to estimate the 

pixel value of the output picture. This operation provides the values to the output Pixel and measures the surrounding 

entropy. The operation entropyfilt defines a 9-by-9 neighbourhood around the pixel of interest by default. An example is 

shown in Figure 4. 

 

Formation of Rough Mask for the Bottom Texture 

The intensity level of the object and the background pixels are clustered into two-dominant modes. Selecting threshold 

0.8 is one way o f  separating the object from the background. This threshold value is selected randomly. Then any 

region (x, y) for which f (x, y) ≥ 0.8 is called the object point, else the region is called as background point. 
 

Hence, the threshold g(x, y) is defined as 

 

g(x, y)  
1; f (x, y)  0.8 

0; f (x, y) < 0.8 

 
 
 
 

(2) 

 

Let the resulting image be ‘BW1.’ All pixels in the input picture are replaced by level 1(white) when the luminance 

is  higher than 0.8 and other pixels are replaced with level 0 (black). An example of the resulting image is shown in Figure  
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Fig. 5 - Illustration of the luminance image 

 

If BW1 is compared with ‘I’, it is noticed that the bottom texture is almost entirely segmented and the top texture 
highly divided (several white objects). By using the function bwareaopen (BWao) the bottom texture can be generated. 

The function BWao imclose is used to close any other open holes in objects and for smoothing the corner lines. The function 

closeBWao is used to block up the holes in the objects. 

 

Texture Segmentation 

Top Texture segmentation using Rough Mask is used to compare the binary image rough mask to the real picture 'I'. 

Mask does not expand to the below end of the picture, there bottom texture mask is not perfect. Therefore, the function 

roughMask is used to segment the top texture. To measure the texture of the picture, entropyfilt is used. By using a rough 

mask top texture raw picture can be obtained by Threshold E2im using graythresh (BW2). 

Area opening is the operation from a binary image (BW1), removes all known linked elements (components) instead 

of pixels P, generating other BW2 binary picture. Eight (8) is the avoidance connectivity for dual measurements, 26 for 

three dimensions, an conndef(ndims(BW),'maximal') for higher dimensions. Here P=2000 is used. 
 

 

Fig 6 - illustration of area opening of an Image 

If BW2 is compared with ‘I’, it is noticed that in BW2 two objects are divided. To obtain a mask for the top texture 

bwareaopen function is used as shown in the following equation. 
 

BW 2  bwareaopen(BW1, P) 
 

(3)

Segmentation Outcomes Display 

The top and bottom textures are generated by using mask2 from 'I'. Then outline the boundary between the two textures 

and displayed as a result. 
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5. Experiments and Results 

For the operation estimation, the proposed technique is tested on pictures that include 100 authentic and 100 spliced 

pictures with the resolution limit of 1200 × 900 pixels to 397 × 397 pixels. The tests were carried out on the MATLAB 
R2013a, RAM 2 GB and processor of 2.90 GHz. 

    Fig.6 a - STEP-1 Gray scaled Image                                            Fig.6 b - STEP-2 textured image creation 

 

       Fig.6 c - STEP-3 Rough Mask Image                                Fig.6 d - STEP-4 Texture Segmentation of an image 

 

 

 
 

 

 
 

 

 

 
 

 
 

Fig. 6 e - STEP-5 Display the splicing result 

 

To estimate the proposed method operation, the above-provided algorithm is followed. The proposed method is 
applied t o our database which consists of both Spliced and original images. This database is created with a collection 

of 150 authentic and 150 spliced images from various internet sources. Figure 6 shows the Experimental outcomes 
generated by the Proposed Method. 

True Negative (TN) and True Positive (TP) are measured where True Negative represents the authentic picture and is 
identified as real and True Positive represents the forged picture and is identified as real as represented in Table 1. Model 

accuracy is provided by the average of these two.
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Table 1 - Accuracy of the proposed method 

Image Type 
Testing Images  

Total Images TP TN 

Authentic Image 150 - 81% 

Spliced Images 150 78% - 

 
 

The total accuracy =
TP+TN

2
 = 

78+81

2
= 79.5%          (4) 

 

Out of 150 authentic images, 121 images are identified as authentic images and out of 150 spliced images, 117 images 

are identified as spliced images. The average of the TP and TN give the accuracy of the model of 79.5%. This technique 

provides good outcomes for both maximum resolution and uncompressed pictures, which represents its effectiveness. 
 

6. Conclusion 

Image forensics is a very popular research area due to the importance of digital pictures on magazine covers, in 
scientific journals and courtrooms and other areas. It is dominant to develop their identity since they can be tampered with 

by using several freely provided picture tampering tools and software. Depending on the characters of texture features of 

an image, here we introduced a digital picture forgeryidentification technique. The experimental outcomes describe that 

the proposed method is effective to identify spliced picture forgery. The identification accuracy is about 79.5%. Even 

though a major section of the spliced region is detected but some region of the spliced region is not detected. These two 

factors can be improved in future work. 
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