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1. Introduction 

Heat treatable aluminium alloys are difficult to weld by traditional welding techniques. Therefore, Friction Stir 

Welding (FSW) process is used where melting temperature is sidestepped. A novel solid-state welding process, Friction 

Stir Welding (FSW), is invented in 1991 by The Welding Institute (TWI) of UK. Joining aluminum alloys by 

traditional fusion welding methods lead to considerable decrease in the mechanical properties and due to the necessity 

of aluminum alloys in aeronautical application, a strong tendency for joining these alloys without mechanical 

deterioration was a demand. Therefore, FSW technique was firstly applied for aluminum alloys[1-3]. FSW allowing 

quality improvements on the product. Also, it generates a wide range of advantages over the traditional fusion welding 

Abstract: The main purpose of this research is to develop T-joints between the aluminum AA 2024-T4 and AA 

7075-T6 using friction stir welding.  The effect of tool geometries, tool traveling speed, and rotational rate in the 

welded T-joints were investigated and discussed. Three different tools were used with different shoulder to pin 

ratios 3.28, 3.36, and 4.31. After optimization, the best tool dimension has used with the different rotational and 

welding speeds. Three tool traverse speeds of 50, 75, and 100 mm/min were used. Two rotation rates of 800 rpm 

and 1000 rpm were applied. After FSW, at a number of the above FSW parameters' combinations, macrostructure 

and microstructure analyses were done using optical microscopy. In order to have an insight into the mechanical 

properties, hardness measurements and tensile testing were carried out. Using small shoulder to pin ratio produced 

visually unacceptable T-joint. Opposite happened by using the tool with 4.31 of shoulder to pin ratio. Furthermore, 

the results showed sound T-welds with no obvious defects at high rotational rate of 1000 rpm with the two used 

traveling speeds. Asymmetric temperature distribution was observed between the two sides, advance side (AS) and 

retreating side (RS 
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techniques. The reason behind the advantages of FSW over the other traditional welding methods is because it is a 

solid-state joining process where the joining process takes place without reaching the melting temperature of the alloy 

[3]. By avoiding melting, defects that related to solidification will be eliminated or considerably reduced such as 

porosity, segregation, hot crack, and dendritic structure formation. The heat input in FSW joint is less than other joining 

process, in this way, fewer residual stresses are predicted. FSW is a clean process with respect to other process where 

shielding gases are not necessary, and fumes are not produced [4]. A rotating tool with a shoulder and pin generates 

heat in FSW by the friction between the tool and the workpieces allowing material softening [5]. The soft material 

transfers from the advancing side (AS) to the retreating side (RS) of the joint, also up down transformation, leading to a 

bond between the plates. Heat generated and material flow depend on different parameters in FSW process which 

directly affect the quality of T-joints [6]. 

To obtain free-defect T-joints, the welding parameters have to set up experimentally for each tool shape. In 

particular, the best relation between the rotational rate of the tool and its traveling speed, it is important to define, which 

affected not only heat generation but also the quality of mixing and dwell time of the material at elevated temperature 

[7, 8]. Thus, many of the welding parameters (welding speed/rotational tool speed) were examined to determined one 

set of parameters for which FSW T-joints exhibited the highest welding quality. Friction stir welded joints, have three 

main different regions. Each region has its own micro- features and mechanical features [9]. Starting from the middle 

of the weld line, the stir zone (SZ), a fine equiaxed grain is formed as a result of recrystallization mechanisms that the 

combination of heat, forging and stirring leads to.  Next, around the (SZ), the thermo-mechanical affected zone 

(TMAZ) region shows a high dislocation density as well as coarsening of the strengthening precipitates of the 

aluminum alloy. Finally, the heat affected zone (HAZ) where hardening precipitates have been dissolved or seemed 

coarser as compared to the base material [10].  

The uses of 2024 and 7075 aluminum alloys (AA) in automotive sector and aerospace industry due to their high 

strength to weight ratio increases the demand for joining these alloys by FSW welding instead of fastener, riveting, or 

fusion welding techniques to achieve quality and performance improvements [11]. Because the high demand of 2024 

and 7075AA, they were also friction stir processed to achieve better surface and mechanical properties for industrial 

uses [12, 13].  These two alloys are often used in a complex profile where the AA2024 is a large sheet used for the 

body structures, called skin and a specific stiffeners AA7075 used as a stringer of a T-joint combinations. Different 

shapes of T-joint combination are usually used, such as ‘‘Z’’ and ‘‘L’’[14, 15]. Despite the quite large number of 

researches on FSW during the last few years, it is worth to note that they are mostly focused on butt joints and the 

knowledge developed cannot directly be transferred to the T-joints, for which several characteristic, must be considered 

[4, 16, 17]. In aerospace industry, cladded plates of aluminum alloys are necessary for corrosion and protection reasons. 

These plates are a sandwich like shape of high-strength aluminum alloy between two sheets of commercially pure metal 

for maximizing the strength and improving the corrosion resistance. Therefore, joining cladded AA2024 and 7075 with 

the existence of a cladded layer has a great benefit in this sector. Acerra et al. [18], noticed the negative impact of the 

cladded layer in joining at specific welding conditions. In their study, in some cases, they removed the cladding layer 

for better joining. Thus, the aim of the current study is to conduct the FSW of the two aluminum alloys in T-joint 

configuration at different welding conditions with the existence of the cladding layer and study its effect on the quality 

and properties of the joint.    

 

2. Experimental Procedure 

The materials used in this research are 4 mm thick AA2024-T4 (cladded sheet), and 5 mm thick AA7075-T6, the 

former used as a skin and the latter used as a stringer. The aluminum plates were shaped in rectangular dimensions with 

200 mm length and 100 mm width. Using a specially designed fixture as shown in Figure 1, the two plates are hold in a 

T-shape configuration in the friction stir welding machine (EG-FSW-M1), locally designed and manufactured in Egypt. 

The designed rotational tools were machined to end with a tapered cylindrical shape pin from tool steel (H13) and heat 

treated to obtain a hardness value of 58 HRC for conducting the FSW trials to produce the dissimilar Al alloys T-joints. 

All the tools have the same shape but with different dimensions. The main dimensions of the three tools are mentioned 

in Error! Reference source not found.. the shape of the third tool is shown in Fig. 2. 

The process conditions were chosen based on the previous studies [18, 19].The welding process was performed in 

two different rotational rates 800 and 1000 rpm and three different travel speeds 50, 75 and 100 mm/min as shown in  

. All the other conditions were kept constant, such as tool tilt angle was 3 degree and plunge rate kept 1 mm/sec. 

For microstructure and mechanical investigation of the FSWed T-joint, three welded specimens were sectioned 

perpendicularly to the welding direction as shown in Fig. 3. Dotted lines in this figure indicating the cutting lines for 

the three specimens.  One specimen is used for micro and macro structure investigation and Vickers hardness test while 

the others two used for the tensile test. For hardness and microstructure investigation the dimension was 100 mm X 15 

mm X 35 mm while the tensile test specimens’ dimensions were 100 mm X 25 mm X 35 mm. For microstructure 

characterization, the specimens were prepared by grinding, polishing using the standard metallographic technique. 

After that, the specimens’ surface was etched using Keller’s reagent to reveal grain boundaries and other 

microstructures features. 
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(b) 

(a) 

 

 

Fig. 1 - A photograph for the adaptive fixture to weld 

2024 and 7075 Al alloys in a T-joint configuration. 

Fig. 2 - (a) a schematic illustration of the tool 

dimensions, (b) A photograph of the machined tool 

used in FSW experiments 

 

Table 1 - Dimensions of the used tools 

Tool 1st 2nd 3rd 

Shoulder diameter (D)mm 16.8 17.4 25 

Pin Diameter (h) mm 6 6.4 7.4 

Pin Diameter (L) mm 3 2.9 2.7 

Pin diameter at the upper 

1/3 of the pin (d) 

5 5.3 5.8 

D/d 3.36 3.28 4.31 

Pin length mm 5 5.8 6 

 

Table 2 - Sample ID 

 

 

 

 

       

 

 

 

 

 

 

 
Fig. 3 - (a) the welded specimen of the T- joint before 

cutting; (b) A part specimen of T-joint after cutting 

perpendicular to the welding direction 

Fig. 4 - (a) and (b) photographs of clamping device for 

the tensile test without and with specimen, 

respectively; (c)  a photograph of the clamping device 

attached to the tensile machine 

Sample ID Tool rotation 

speed (rpm) 

Tool transverse 

speed (mm/min) 

H-50 1000 50 

L-50 800 50 

L-100 800 100 

H-100 1000 100 

L-75 800 75 

(C) 
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Tensile test was done using model (Instron-M4208), at load 300 kN at room temperature with a cross-head speed 

1mm/min for evaluation the weld mechanical properties along the skin (X- axis) and along the stranger (Y-axis) using a 

special clamping fixture as shown in Fig. 4.  After tensile fracture locations of samples were observed and 

photographed. Hardness measurements were measured using Vickers hardness tester (HWDV-75, TTS Unlimited, 

Osaka, Japan) to evaluate the hardness profiles with 2 kgf load and 15s dwelling time at regular intervals of 0.5 mm 

between each point as shown in Fig. 5. 0.5 mm represents more than 2.5 times the maximum indentation diameter. 

 

 

Fig. 5 - Hardness measuring points along the traversal cross section in the FSW T-joint specimen 

 

3. Results and Discussion 

3.1 Metallurgical Characterization 

From Error! Reference source not found., using the described 1st and 2nd tools produced a T-joint with a 

surface grove along the welding line which may be attributed to low heat input and insufficient material flow to fill the 

grove, as shown in Fig. 6 . This defect makes the joints unacceptable visually when using these tool dimensions. On the 

other hand, all the resulted T-joints welded by the 3rd tool were free from any visual defects and they welded 

successively using the described welding parameters in the experimental section,  

. Three tool traverse speeds of 50, 75, and 100 mm/min were used with two rotation rates of 800 rpm and 1000 

rpm. Therefore, this tool is the one used throughout the research. From that, it could be concluded that changing the 

shoulder and pin dimensions play a vital role in the amount of the generated heat which directly affect the material 

plasticity and its flow. We could conclude that tool geometry or dimension is responsible for determining the weld 

quality with maintaining the other welding parameters constant, this conclusion is in accordance with other reported by 

Raouache et. al.[20]. 

Therefore, between the suggested and designed three tools, the third tool with higher shoulder dimeter and higher 

D/d ratio, worked the best with the given friction stir welding parameter and used Aluminum alloys.  Material hot 

deformed by the friction stir tool must be able to fill the void produced by a traversing pin. If the tool design is 

incorrect (i.e., pin diameter was too large for the selected parameters) or the travel speed was too fast, the hot deformed 

material will cool before the material can fully fill the region directly behind the tool. In addition, the shoulder is 

needed to keep enough heat to allow material flow around the tool; if insufficient heat is generated (through insufficient 

forging pressure or incorrect shoulder diameter), then material will not flow properly, and holes or groves will be form. 

 

 

 

Fig. 6 - Two welded T-joint at the same welding conditions rotational rate 1000 rpm with traverse speed 100 

mm/min but with two different tools. (a) using the 1st tool (D/d) =3.36; (b) using the 2nd tool (D/d) =3.28 

 

Flash was observed in all the cases, but it was much more in some cases such as 800 rpm with 75 mm/min and 

1000 rpm with 100 mm/min. The flash formation may be attributed to either deep plunge depth or high applied force by 

the tool or due to excessive heat input; e.g. high rotational rate and/or low traversal speed [21]. From macrostructure 

investigation, two welded T-joints produced a large tunnel defect in the advance side of the weld joint at 800 rpm with 

50 and 75 mm/min traversal speed using the third tool, as shown in  Fig. 7: (a) and (b), respectively. At the same 

rotational rate (800 rpm), but unpredictably higher traversal speed (100 mm/min), smaller defect was observed Fig. 7: 

R

S 

A

S 
(b) 

(a) 
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(c). This may be due to the position of the section taken which not represent the actual size of the tunnel along the weld 

length. On the other hand, Fig. 7: (d) and (e), no tunnel defect was observed at 1000 rpm with 50 and 100 mm/min 

traversal speed, respectively. In Fig. 7: (d) and (e) welded at 1000 rpm with 50 mm and 100 mm, respectively, better 

mixing between the two used alloys and the cladding layer were observed. This result could be attributed to the rate of 

material flow in the former where the traversal speed is high, and to high rotational rate of (1000 rpm) that in turn 

increases the generated heat in the two latter conditions   
 

  
L-50 L-100 H-100 

Fig. 7 - Macrostructures of joints welded at different welding conditions and using only the third tool  

 

It can be considered that during the welding process of T- joints, cavities form preliminary in AS, and 

immediately, flowing materials in other regions fill these cavities to form a sound weld. If the fulfillment is insufficient 

or lagging, these cavities will remain inside the weld. As a result, a tunnel defect forms when the welding process has 

finished formation of tunnel defect at 800 rpm may be caused because of the insufficient material flow and low heat 

input, so the material plasticity is not enough to fill the formed cavities at the advance side [22]. Obviously, the tunnel 

defects in the T-joints is mainly produced by lacking material on the AS, which is accredited to a temperature 

distribution across the skin material. There is a vertical decrease in temperature and consequently increase in flow 

stress from top to bottom of the nugget zone. Therefore, the material ability to flow is easier near the top whereas the 

flow near the bottom remains heavily sluggish and need much forging force. So, the material which is required to refill 

the cavity left behind by the advancing tool is lacking resulting in tunnel. The flow stress harshly increases from top to 

bottom and material transport on the AS is considerably greater in comparison to that on RS. By increasing the weld 

speed from 50 to 100 mm/min the cooling rate increases and consequently this enhances the drop-in temperature from 

top to bottom. As a result, the flow stress severally increases which results a greater size of the tunnel. 

We should put on consideration the existence of the cladding layer (commercial pure aluminum alloys with zinc) 

which act as a third material in this joint beside AA2024 and AA7075 because it has different physical and mechanical 

properties which is quite different than the two other alloys. If we accepted the welding temperature at the operated 

parameters around 450oC [23], then the homologous temperatures for thermomechanical deformed in the stirred zone 

7075, 2024 and commercial Al are almost 0.95, 0.92 and 0.79 respectively.   Therefore, the ability to flow and mix with 

each other is different which makes the expectation to many different defects is high.  Acerra et. al. [18]. detected a 

corner tunnel defect and a sort of hooking effect is observed with macro- voids at the end of the coating layer inside the 

T-joint transverse section for the AA2024-AA7075 T-joints. The resulted microstructure after FSW consisted of three 

new zones and the base alloys. These zones, starting from the place of the pin, are the stir zone (SZ), the thermo-

mechanical affected zone (TMAZ) and the heat affected zone (HAZ), as shown in Fig. 8. 

 

 

 

 

 

 

 

 

From micro- and macro- structure analysis some features were noticed. Firstly, the grains in the stir zone for both 

materials are undergoing a dynamic recrystallization to form a new fine and equiaxed grains with average size 2.3±0.4 

and 5.5 ±1.5 μm in diameter for 7075 and 2024 aluminum alloys, respectively as listed in Table 1 , and shown in Fig. 9. 

From that, we could conclude that the started grain size affects the resulted microstructure in dynamic recrystallization 

during FSW, which in turn improve the mechanical properties of this region [24].  Therefore, different materials have 

different responses to the FSW process even if the used FSW parameters were the same.  This result was consistent 

with what has been found in a previous study by Ahmed et. al.[19] who found that the recrystallization process was 

different at the same FSW conditions for AA7075 than in AA5083. 

 

 

Table 1 - Grain size of the stir zone for each condition 

FSW 
Condition 

L-50 L-100 H-50 H-100 

Grain size of the 

stir zone (μm) 

4.6±0.8 4.7±0.7 6.46±1 5.1±0.6 
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Fig. 8 - Optical microstructure of the FSWed T-joint AA2024-AA7075 at the interface between the NG zone and 

the TMAZ with some part of the HAZ 

 

  

(a) (b) 

  

(c) (d) 

Fig. 9 - Optical microstructures base metal (BM) (a)2024-T4, (b) 7075-T6; (c) SZ of AA2024; (d) AA7075 both 

for C-L-100 

 

The large grain size in the SZ at higher rotational rate is attributable to higher heat input. Same result was observed 

as in Fig. 8: (b) and (d) at traverse speed 100 mm/min for 800 and 1000 rpm, respectively. More features were 

observed, for example, the transition zone between the TMAZ and the SZ was sharper and smaller in advance side than 

on the retreating side, as shown in Fig. 9. This result confirmed with that obtained in other work [15]. Results indicate 

that there is an obvious asymmetric temperature distribution between the advancing side (AS) and the retreating side 

(RS). This result was also noticed in the work of Jingming et. al. [27] by investigating a numerical simulation and 

experimental investigation for lap joint of the same alloys welded by FSW. Moreover, the unsymmetrical properties of 

the AS and the RS was noticed also in the hardness value in previous studies, Dudzik [28]. More about the asymmetric 

characterization between the advancing and retreating weld in FSW was observed in Raja et.al.[29]. In Fig. 10, the 

thickness of the cladding layer in the RS was 200 μm and it reached to 100 μm in the AS. Also, the grain under the 

cladding layer in the AS was refined and equiaxed while in the RS the grains were kept as it was, as received (7075-T6) 

which indicate a non-mixing condition. The existence and thickness of cladding layer indicate the quality of mixing 

between the two alloys during FSW Also, it implies the asymmetric temperature distribution between the two sides, AS 

and RS. For that, we could conclude that the AS undergoes higher temperature and stirring when compare with the RS 

for the same FSW condition. 
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(a) (b) 

  
(c) (d) 

Fig. 8 -  Optical microstructures of the SZ of the joints at (a) L-50; (b) L-100; (c) H-50 (d) H-100 

 

 

 

 

 

The transition zone in 

the RS 

The transition zone in the 

AS 

Fig. 9 - Microstructures of the transition zone in the 

AS and the RS for AA2024 and AA7075 T- joint 

welded at 800 rpm and 75 mm/min 

 

 

3.2 Mechanical Properties 

For as received alloys, the hardening mechanism in 2024-T4 ascribes to the present of Guinier-Preston zones (GP 

zones) that prevent dislocation movement. Al2CuMg (spheroidized), Al7Cu2Fe (irregular), and Al2Cu precipitates are 

the present phases in 2024-T4. This alloy has an average hardness equal to 135±5 HV.  For 7075-T6 aluminum alloy 

the present phases are in irregular shapes of Al7Cu2Fe and Al2CuMg. Moreover, spheroidal particles of Mg2Si, and 

MgZn2 precipitates at grain boundaries and inside the grain are presented. These precipitates produce an alloy 7075-T6 

with average hardness equal to 165±5 HV [11, 25, 30]. The results of the hardness tests were highly dependent on the 

amount of mixing that occurred between the stringer (AA7075) and the skin (AA2024) materials during the welding 
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RS AS 

process. Hardness for all the tested conditions gave a (W) shape profile as shown in  Fig. 12. The hardness profile 

emphasizes the change in microstructure and mechanical properties between the FSW zones. The higher values in the 

middle of the graph represent the SZ while the lower values represent the HAZ. Overall, these findings are in 

accordance with findings reported by Raja et al.[31]. However, when comparing our results to those of older studies, it 

must be pointed out  that different conditions and alloys may show different hardness profiles when joint by FSW [32].  

In Fig. 12, we also notice the variation in hardness between the upper surface of 2024AA (Row 1) which is directly 

under the tool shoulder, and the lower surfaces (Rows 2 and 3).  The mixing in the first row was in 2024AA only. From 

that, we may conclude that the skin of the T-joint subjects to friction stir processing (FSP) [33]. Therefore, the closer 

the surface to the shoulder, the higher hardness is expected when comparing with other rows. 

 
 

 

 

a. 2024, 7075. and the 

cladding layer at low 

magnification (RS) 

b. 2024, 7075 and the 

cladding layer at low 

magnification (AS) 

 

 

c. Higher magnification 

(RS) 

d. Higher magnification 

(AS) 

Fig. 10  - Cladding layer for the RS and the AS for T-joint welded at 

800 rpm with 50 mm/min 

 

The value of hardness in the SZ affected by the used rotational and traversal speeds for example at 1000 rpm and 

100 mm/min the measured hardness values were slightly higher than the base alloy 2024AA in row 1, as shown in Fig. 

12. However, lower rotational rate and traversal speed gave hardness values less than the 2024AA as shown in   

. The findings are directly in line with previous findings by Saeid et. al. [34]. The reasons why Stir zone has the 

highest hardness are as follows:  

Firstly, high temperature in this region causes an 

increase in the solid solubility of the alloying elements, due 

to the dissolution of the precipitate which leads to high 

lattice distortion. This lattice distortion increases the resistance to dislocation motion. Also, the high temperature forces 

the large precipitates to dissolve and then reprecipitate by natural aging after FSW [35]. Secondly, the phase 

transformation driving force and nucleation rate increase which encourages the formation of fine recrystallized grains. 

In addition, the diffusion rate of the solute elements increases, which leads to a uniform distribution of the solute 

elements [25]. However, some particles could cause reduce in hardness and strength due to the formation of coarse 

particles, such as Mg2Si. The Mg2Si particles hinder the alloying element dissolution in the matrix. Also, grain growth 

could happen which lead to deterioration in mechanical properties as noticed in the HAZ region [30]. 

 

 

 

Table 4 - Average hardness values of the SZ for the 

different conditions at row one 

Cladding layer 
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Furthermore, low temperature in HAZ region during FSW compared to the solution temperature of the precipitates 

may lead to insufficient driving force for larger precipitates to dissolve, also in consequence to reprecipitate after FSW. 

Instead, some precipitates might have coarsened and lost their coherency with the matrix due to the thermal history 

which causes softening in the HAZ regions [2]. From Fig. 11, our results demonstrated that, at constant rotational rate, 

lower traversal speed increases the HAZ region and decreases the hardness values in this region[36]. low traversal 

speed gives wider hardness profile. This wider hardness profile means, wider HAZ region and wider SZ region which 

implies that lower traversal speed affects more surface area in FSW process. A similar pattern of wider HAZ region due 

to higher heat input was obtained in another research by AHMED et. al.[37]. This behavior has been attributed to the 

lower heat input at higher welding speed [35].   In contrary, at the same traversal speed and different rotational rates 

approximately the same hardness profile was shown as in Fig. 13. However, the hardness values of the HAZ region are 

lower at higher rotational rate in both Fig. 13 (a) and (b).  

From Fig. 14, the hardness profile of the central line of the T-joint is illustrated. It is noticed a double trough in the 

curve with a maximum point between them which indicate the highest hardness value between the two curves, and it is 

approximately 145 HV. This abrupt increase of hardness is caused by the change of materials from AA2024-T4 to 

cladding layer then AA7075-T6.  Also, from this figure, we noticed a HAZ region in 7075 aluminum alloy where the 

hardness values were declined until it reached approximately 115 HV, where the hardness value of 7075 was in the 

range of 165 HV. 

The maximum failure load in X direction has the higher value when welded at high rotational rate of 1000 rpm, 

and low traversal speed 50 mm/min. However, this value is much lower than the base material for both AA 2024 and 
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a. Hardness profile for the upper row of two T-

joints welded at (800 rpm) with different 

traversal speeds at (50 and 100 mm/min) 
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b. Hardness profile for the first rows of two T-

joint welded at (1000 rpm) with different 

traversal speeds at (50 and 100 mm/min) 

 
Fig. 11  -  Hardness profile comparison at constant 

rotational speed 

 

a. Rows places in the sample 

 

b. H-50 

 

c. H-100 

 
Fig. 12 -  Hardness measurements of the T-joint at 

different depths as shown in (a)  for (b) H-50 (c) H-

100 
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AA 7075.  The lower failure load value was obtained also at 1000 rpm but at higher traversal speed, 100 mm/min as 

shown in  

. 

 

  
a. Hardness profile for the upper row of two T-joint 

welded (50 mm/min) but different rotational rate 

(800 and 1000 rpm) 

b. Hardness profile for the upper row of two T-

joint welded at (100 mm/min) but different 

rotational rate (800 and 1000 rpm) 
 

Fig. 13 - Hardness profile comparison at constant traversal speed 

 

 

 

 

Fig. 14 - Hardness variation along the depth of the 

weldment of the T- joint at condition H-100 

 

Table 5 - Tensile test result along X and Y direction 

Table 4 - Average hardness values of the SZ for the 

different conditions at row one 

Sample ID L-50 L-100 H-50 H-100 

HV 122 ±3 124 ±6 118± 2 137 ± 6 

Table 5 - Tensile test result along X and Y direction 

Sample ID Ultimate Tensile 

Strength (MPa)-X 

Ultimate Tensile 

Strength (MPa)-Y 

L-100 216.56 30.72 

H-50 231.61 31.76 

H-100 189.59 34.16 
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Conclusions  

i. High quality defect free T-joints produced by using the higher (shoulder/pin ratio) D/d ratio of 4.31, at 

rotational rates of 800 and 1000 rpm and travel speeds of 50, 75 and 100 mm/min. Therefore, tool 

characterized by large shoulder diameter is preferred for this kind of joints. 

ii. Significant grain refining was observed with the finest grain values of (4.6±0.8 µm) and (4.7±0.7 µm) resulted 

at constant rotational rate of 800 rpm with travel speeds of 50 and 100 mm/min, respectively. This result 

implies that rotational rate has more influence in grain size than the change in the travel speed.   

iii. Wider W-shape hardness profile was shown at lower travel speed for given rotational rate.  

iv. FSW process, shows asymmetric temperature distribution between the, AS and RS. 

v. The highest hardness value of 137±6 HV at the SZ obtained at rotational rate of 1000 rpm and 100 mm/min at 

the SZ shows a high value up to 137±6 HV at rotational rate of 1000 rpm and 100 mm/min.   

vi. The highest failure strength of 231.61 MPa value in the direction parallel to the skin (X direction) resulted at 

rotational rate of 1000 rpm and travel speed of 50 mm/min.  

vii. The highest failure strength of 34.16 MPa value in the direction parallel to the stranger (Y-direction) resulted 

at rotational rate of 1000 rpm and travel speed of 100 mm/min.  
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