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1. Introduction 

Flow measurement is a process of quantifying fluid movement. The water meter, which was first used 3000 years 

ago by the Egyptians for prediction of their land fertility was a crude form of weir [1]. To date, fluid dynamics can be 

measured by using a variety of devices such as ultrasonic flowmeter, anemometer, positive-displacement flow meters 

and others [2-4]. Accurate measurement of fluid and gas flow is crucial to ensure the efficiency and effectiveness of 

systems in diverse applications that require continuous monitoring of mass flow measurement, such as at power plants 

of natural gas, compressed air, steam generator and water supply, and to test boiler efficiency. This is especially useful 

to determine the fluid or gas consumption and for leakage detection. Joshi et al. [5] reported an innovative flow sensor 

consists of a surface acoustic wave (SAW) oscillator, which is heated to a suitable temperature above the ambient 

before its operation. The convective cooling caused by fluid flow decreases the substrate temperature, thereby causing a 

change in the oscillator frequency; this gives rise to a direct measurement system with high sensitivity and excellent 

dynamic range, which digital output is related linearly to the measured acoustic waves. Acoustic waves are a type of 

energy propagation through a medium with a unique characteristic acoustic velocity. The acoustic based technology has 

been adopted in various equipment including ultrasound machines and ultrasonic receiver (e.g. EPOCH 650) for non-

destructive monitoring and diagnosis purposes. The latter system is the most recent ultrasonic sensor that is able to 

provide phase measurement of a signal. Among the works that made use of EPOCH 650 in their system include Hariri 

Abstract: The aim of this study is to investigate the feasibility of using a laboratory assembled piezoelectric based 

photoacoustic (PA) system for noncontact monitoring fluid flow. This is to overcome the drawbacks of some 

existing fluid flow detection systems, which include expensive equipment and their maintenance cost, limited 

sensitivity and specificity in detecting signals from restricted regions or at low flow velocity. The produced PA 

signal waves detected by a piezoelectric transducer used in this study was processed to determine the required 

phase value (Ф), which value was found to correlate linearly with fluid flow status. The fluid pressure difference of 

1.16 pascals (Pa) and 11.90 Pa applied to the developed mock circulatory system was observed to produce changes 

in phase value with mean ± standard deviation (SD) ΔФ of 0.79 ± 0.07 rad and 2.17 ± 0.07 rad, respectively, 

suggesting a linear response of the developed system with changes in circulation system. This trend was supported 

with the relatively low absolute difference of 0.07 ± 0.01 rad in the predicted values as compared to that of the 

ground truth. This work concluded that the capabilities and simplicity of the proposed PA system renders it 

feasible for cost effective, non-destructive assessment of fluid flow in future studies. 
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et al. [6] for measurement of biologically features of tissues, wherein mechanical structure of tissues can be identified 

based on their acoustic properties depending on viscosity of the sample.  

Similar to acoustic waves, its counterpart photoacoustic (PA) waves is the sound waves produced in the presence 

of optical source, which operation is based on the optical-acoustic effect. Non-ionizing light source delivers light 

energy to an investigated medium, medium’s absorber(s) would absorb the photonic energy and start to vibrate. 

Thermal expansion occurred during the light energy absorption results in ultrasonic emission (i.e. PA generation), 

which magnitude is proportional to the energy absorbed. This could be used to reveal the specific optical absorption of 

sample absorber(s). A work by Viegerov [7] demonstrated the use of photoacoustic spectroscopy (PAS) that adopted 

PA technology to determine gas concentration in a mixed gas, since then this system has found its application in 

numerous investigations of gaseous samples [8, 9].  In addition PA approach is shown to exhibit a great potential in 

preclinical research, clinical and diagnostic practice [10] to provide both structural and functional optical information 

of biological tissues with high spatial resolution as compared to ultrasound technique. The result generated from PA 

system depends not only on mechanical and elastic properties of the tissue but also its optical absorption properties. 

This technique is suitable for real time and non-invasive monitoring of biomedical function and dynamic without 

involving ionizing radiation. In addition to the investigation of anatomical structures such as the microvasculature, this 

technique is able to provide functional information of human body such as blood oxygenation, blood flow and 

temperature [11-13].  

Blood circulation is one of the most important functions in a living organism’s body to deliver blood carrying 

oxygen to the brain and other organs. It can also promote healthier skin and help with cell growth. Sound waves have 

been used extensively in the study of circulatory disorders [14, 15]. Arteriosclerosis is one of these disorders, which 

often begins with injury to the endothelium of an artery. The latter may be caused by infection, excessive lipids and fats 

in the tissues and high blood glucose level. These circulating lipoproteins may accumulate within the arterial wall and 

turning into plaque, which narrows the arterial lumen and resists the blood flow. Vessel narrowing leads to ischemia 

and hypoxia that may severely impair brain and heart function. Previous researchers [16-18] reported the feasibility of 

using acoustic waves to detect coronary stenosis based on the discernable sounds produced by the heart. However the 

current imaging systems such as color flow imaging, which exploits the measured time and phase shift to estimate the 

axial component of the blood flow, can be of complex and costly construction [19]. The use of these imaging systems is 

limited by their low measurement sensitivity at low flow rate [20], which often leads to the use of contrast agents for 

enhance visualization [21-23]. Meanwhile Murphy et al. [24] showed that eventhough power Doppler imaging, a new 

sonographic technique, can be suitably used to evaluate the performance of vascular system i.e. amplitude or strength 

of the Doppler signal to distinguish small vessels and slow moving blood, it is not able to reveal directional 

information. This work aims to investigate the feasibility of an assembled piezoelectric based PA system for label-free 

fluid flow monitoring via comparison using Olympus ultrasonic receiver (EPOCH 650).  

 

2. Material and method 

Light waves of center wavelength, λ, 633 nm produced by a continuous laser source (R-30993, Newport Corp.) 

shown in Fig. 1 were allowed to pass through an acousto-optic modulator (AOM) controlled by a radiofrequency (RF) 

driver to produce trains of laser pulses of frequency 80 MHz required for the generation of thermal expansion within 

the investigated sample. The arrangement and details of this modulation system can be found in our previous work 

[25]. The temperature variation in the medium produces sound waves (photoacoustic signals) of different vibrational 

velocity, which amplitude is proportional to the energy of the laser beam absorbed, was measured using an unfocused 

piezoelectric transducer (model: LF 2000K1, 2 MHz). The latter was connected to an oscilloscope (model: Rohde & 

Schwarz – HMO2022) for acquisition and storing of data. The PA results are then analyzed and compared with that 

provided by EPOCH 650, which is taken here as the ground truth, for the evaluation of system performance. 

 

2.1 Phantom microcirculatory system 

Microcirculatory is a system that allows blood to circulate and deliver nutrients, oxygen, hormones and other 

gaseous to and from cells within the body systems to maintain homeostasis. Blood vessel larger than 10 mm in 

diameter is regarded as elastic [26] as it allows the vessel to expand for better pumping of blood, and diameter of 

arteries typically ranged from 0.1 mm to 10 mm depending on its location within the body system [27]. A phantom 

system that simulates human microcirculatory shown at the center of Fig. 1 was prepared for investigation work. This 

system used polyethylene (PE) tube to represent elastic blood vessel, while water pump is to mimic heart contraction to 

pump blood into the entire system. Water was used as a substitute of blood in this study largely due to the high 

similarity in their medium density, which renders the former commonly used in studies to verify intraoperative blood 

loss [28]. The different flow rate along the PE tube was achieved by applying different voltage to a waterproof water 

pumping system (model. JT-180A) shown on the right of Fig. 1 to produce relatively constant flow velocity ranges 

from 1.67 to 5.83 litre/minutes detectable by a water flow sensor (YF-S401). Also shown in Fig. 1 is the placement of 

transducer for measurement of PA waves following the supplied voltage level. This phantom circulation system was 

drawing power from a direct-current (DC) power supply (SKU-878306) controlled using Arduino Uno (Rev 3). This 
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system costs around USD 9,000 (MYR 38,450) in material for construction, which is considered cheaper as compared 

to the market available devices such as EPOCH 650. 

 

 

Fig. 1 - Schematic diagram of photoacoustic (PA) imaging system 

 

2.2 Fluid flow control system 

A DC voltage supply was used to produce pressure drop across the PE tube via a water pump. The supplied voltage 

level was arbitrarily selected as 4.5 V, 6 V, 9 V and 12 V. Each of the voltage level produces different fluid rate 

flowing through the PE tube. Three sets of data were consecutively collected for each experiment, from which mean 

and standard deviation (SD) are calculated. The relationship between the peak magnitude of the measured PA value in 

units of volts (mV) following the exerted fluid pressure, P, is given as followed [29, 30]:  

                                                     

                                                     P  =
V


                           (1) 

 

where V and ρ represent the measured peak PA value and total fluid volume, respectively. The differences in the 

supplied voltage (V1 and V2) mentioned in earlier paragraph give rise to the change in fluid pressure (ΔP) in units of 

pascals (Pa) of 1.16, 5.88, 11.90, 3.53, 9.52 and 4.76 shown in Table 1.  

 
Table 1 - Changes in fluid pressure (ΔP) induced by different voltage supplied to phantom circulation 

system 

  

 

 
 

 

 

 

 

 

 

 

 

 

 

Supplied voltage (V) Difference in fluid pressure, 
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2.3 Signal processing and analysis 

This study used Fast-Fourier transform (FFT) function available in MATLAB (version 2016a) in (2) for 

conversion of time-dependent signals to frequency domain. The PA signals detected by the piezo-transducer give real 

(Ψre) and imaginary (Ψim) components of the measured voltage, which represents signal attenuation and echoes, 

respectively. The analogue signals are then digitized for FFT analysis. The phase value, Ф, in units of radians (rad) 

calculated from the components of PA signals in (3) is shown in (4). The value for real and imaginary part of PA 

signals are inversely proportional to each other [31]. It should be mentioned that phase value is corresponded to the 

amplitude of PA signal detected by transducer, wherein the higher the amplitude the more light absorption by 

absorber(s) within the medium [31, 32]. 

 

                                 (Ψre, Ψim) = FFT (ψ(t))                                                          (2) 

 

where ψ(t) represents acoustic wave in time domain. Next, phase difference, ΔФ (rad), is calculated from Eq. (4) to 

determine the difference in the FFT peak of two acoustic signals (e.g. signal x, y) produced following the supply of V1 

and V2 in Table 1, respectively.  

 

                                                    Ф = tan ( )      (3) 

                   ΔФ = Ф(y)–Ф(x)                  (4) 

3. Results and analysis 

The measured time dependent PA signals for different applied voltage of 6 V and 9 V is shown in Fig. 2. Fig. 3 

shows changes in the calculated fluid pressure with differences in the supplied voltage based on the values tabulated in 

Table 1. Meanwhile ΔФ following changes in different fluid pressure calculated in (4) is shown in Fig. 4.  
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Fig. 2 - The measured time dependent PA signals for different voltage supplied to phantom 

microcirculatory system 
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Fig. 3 - Fluid pressure change, ΔP, with changes in voltage supplied, ΔV, to the circulation system 
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The diagram shows mean and standard deviation, SD, (shown as magnitude of errorbars) of changes in phase value 

(from three consecutive experiments) with the supplied voltages. The fluid pressure ranges from 1.16 pascals (Pa) to 

11.90 Pa applied to the developed mock circulatory system was found to produce a notably linearly increase in ΔФ 

from 0.79 ± 0.07 rad to 2.17 ± 0.07 rad, suggesting a linear response of the developed system with changes in 

circulation system. 

 

 

 

 
 

 

 

 

 
Also shown in Fig. 4 is the results obtained from the EPOCH 650 using V323-SU transducer. Based on the results 

in Fig.4, the absolute difference in the predicted ΔФ and that given from the EPOCH 650 system is calculated as 0.07 ± 

0.01 rad.  

4. Discussion and conclusion 

The results in Fig. 3 showed that fluid pressure change is linearly proportional to the differences in the supplied 

voltage, which can be represented by a linear function. This suggests a linear response of the developed system with 

changes in circulatory performance. The slight difference in fluid pressure change at ΔV of 3 V in Fig. 3 (i.e. produced 

by voltage supply of 6 V - 9 V pair and 9 V - 12 V pair in Table 1) revealed two different ΔP values of 3.53 Pa and 

4.76 Pa. This inconsistency may possibly be explained by the different shear rate produced by the applied voltage, 

supported by the fact that water is a Newtonian fluid, which viscosity is independent of shear rate [33]. Here an 

increase in voltage supply, and hence medium pressure, promotes higher shear rate and encourages fluid flow velocity 

[34-37]. Therefore the supplied 9V - 12 V difference is able to generate a higher shear strength as compared to their 

counterpart.  

Since both piezo-PA and EPOCH system adopt piezo technology in their systems, Fig. 4 showed an increasing 

trend of similar magnitude in the calculated phase change with fluid pressure difference detected by both systems. 

EPOCH system uses piezoelectric ceramic transducer (i.e. a micro-machined element of piezoelectric ceramic 

embedded in an epoxy matrix). This composite element with enhanced detection bandwidth improves sensitivity in 

flaw detection [38]. This results in a better receptive and accuracy in the system to the measurement of fluid flow as 

compared to the constructed system. It must also be mentioned that the results may be varied with the different 

transducer (detection) beam patterns. Since EPOCH system is able to focus spherically (spot) and cylindrically (line), 

this allows it to record a more concentrated PA signals as compared to the unfocused linear transducer used in the 

developed system. Nonetheless the remarkably low absolute difference in ΔP of 0.07 ± 0.01 Pa between these systems 

in Fig. 4 supports the feasibility of using the developed system for the measurement of fluid flow status.  

Although Fig. 2 showed a visually indistinguishable pattern of PA signals, the analytical techniques applied on the 

signals as discussed in section 2.3 allow us to discern changes in fluid flow. The linear change in phase difference with 

the fluid pressure observed in Fig. 4 agreed well with the principle of Doppler shift [39-43]. Doppler effect causes a 

linear change in frequency of an incident wave with the difference in velocity between the transmitter and receiver [44], 

and phase change of a cycle in a period of time is equivalent to a Doppler shift of frequency. This study concluded that 

even though the values and relationship observed in Fig 3 and Fig. 4 are valid for the employed experimental system 

and conditions presented herein, the results showed the feasibility of the developed system for noninvasive assessment 

of fluid flow with acceptable performance, implying its potential application as a label-free technology at a fractional 

price compared to market available system (e.g. EPOCH 650).The future of this work includes the use of this piezo-

photoacoustic system for in-vivo study of human tissues, such as hydration level and hemoglobin binding status by 

exploting the different PA properties of the underlying chromophores.   
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