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1. Introduction 

SOFC has become a great blessing in recent renewable and sustainable energy sector due to its high efficiency, fuel 

flexibility and low pollutant emissions [1–4]. Oxygen ion-conduction requires high activation temperatures and proton-

conducting materials can be thermally activated at lower temperatures than oxygen ion-conducting ones [5]. At  

intermediate temperatures (IT, 400-700℃), with a low activation energy and higher efficiency, a majority of perovskite-

type oxides have shown high proton conductivity in H2O and H2 containing atmospheres [6–8]. The IT-SOFC has become  

cost effective system over conventional high temperature solid oxide fuel cells (HT-SOFC), as it can be manufactured 

more economically using less expensive stack interconnect materials [9,10]. In general, high-temperature proton 

conductors have been found to be oxides with oxygen deficiency in the form of oxygen vacancies, where protons dissolve 

as hydroxide defects in the oxide at the expense of the vacancies. 

Getting the best proton-conducting electrolyte material with high chemical stability is a great challenge. The 

synthesis of a highly-dense ceramic proton-conducting electrolyte material at low sintering temperature is another major 

challenge as well.  Acceptor-doped perovskites are examples of oxides containing both oxygen vacancies and protons. 

Some of the Ba- and Sr-containing perovskites exhibit state-of-the-art proton conductivity of about 0.01 Scm-1 (e.g. 

BaCe0.9Y0.1O3−δ) [11–14]. Meanwhile, BaCeO3-and BaZrO3
-based materials exhibit  high conductivity and  good 

chemical stability [7,15,16]. BaCe0.7Zr0.25-xYxZn0.05O3 proton-conducting electrolyte was reported to be a high density and 

highly-conductive electrolyte in the intermediate temperature range [8,17]. 

Recently, alternative proton-conducting materials like acceptor-doped rare-earth materials, MTO4, where M = La, 

Ca, Sr, Ba,Y, Nd, Gd, Tb, Er,  Pb, Cd and T = Nb, W, Mo, Mn have been suggested to offer high CO2 tolerances based 

on the scheelite structure [18–22]. Proton conductivity dominates under wet conditions up to temperatures around 1,000℃ 

with a contribution of p-type electronic conduction, which is significant under oxidizing conditions above 800℃. 
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LaNbO4-based materials exhibit moderate conductivity while being almost pure proton conductors, and are known for 

their stability in CO2-containing atmosphere and water vapor environment [18,23]. The highest proton conductivity 

recorded so far is for LaNbO4 when it contains minor A-site acceptor substitutions, such as Ca0.01La0.99NbO4-d at 800℃ 

[24]. Among the scheelite crystals, BaWO4 is the most efficient crystal for the development of Raman lasers [25]. The 

structural calculations also show BaWO4 to be a direct band gap crystal, having less dispersive valence and conduction 

bands in contrast to other Scheelites crystals. These scheelite-type oxides exhibit a high oxide ion conduction, e.g. 

Pb0.9Sm0.1WO4+δ shows a conductivity of ∼2×10-2 Scm-1 at 800℃, which is comparable to that of YSZ (3.6×10-2 Scm-1 at 

800℃) [26,27].  

Though SrWO4 materials originally used as photoluminescence medium, lasers hots, optical fibers, photocatalyst 

and antibacterial materials, this material can be used in fuel cell application. To date, except for the Czochralski technique 

and pulsed laser deposition, wet-chemistry routes including precipitation, polymeric precursor, solvothermal, microwave 

radiation and microemulsion-mediated method have been reported to prepare SrWO4 crystals [28,29]. Moreover, SrWO4 

crystals allow the introduction of different lanthanide ions, which can be used as matrices for laser active elements with 

non-linear self conversion of radiation to a new spectral range. SrWO4 sample compound was chosen as electrolyte 

because Sr is highly chemically reactive and stable element. SrWO4 material has very high chance to get high ionic 

conductivity. 

In the current study, SrWO4 as scheelite material was composited to get enough highly dense electrolyte material to 

be used in SOFC. High density coupling with high conductivity will make this material very useful for SOFCs 

applications. The newly mixed ion-conducting scheelite SrWO4 is abbreviated as SWO. The sample compound was 

synthesized by solid state reaction route (SSR) and characterized by X-ray diffraction (XRD), scanning electron 

microscopy (SEM), Fourier transform infrared (FTIR) and Electrochemical impedance spectroscopy (EIS). 

 

2. Experimental 

To prepare the SrWO4 ceramic compound, the solid state reaction method was used. Stoichiometric amounts of 

SrCO3 (98% purity, Aldrich, China) and WO3 (99% purity, Aldrich, USA) were mixed with ethanol using a mortar and 

pestle. The finely-ground powder was first dried and subsequently calcined at 700℃ for 10 h using a heating rate of 2°C 

min-1. A hydraulic press was utilized to make 13 mm diameter pellets under 5 tons of pressure and sintered at 900℃ in 

air for 10 h, each with 2℃ min-1 as heating and 5℃ min-1 cooling rate. The final sintering temperature was 1000°C in air 

for 10 h. The phase characterization was examined by X-ray powder diffraction using Bruker axs-D8 advance 

diffractometer (CuK1,  = 1.5406 Å) in the 2 range from 10º to 90º. The data was collected with a count time of 60 

sec/step and a 0.01º step size. The FullProf (ABC publishers) software was used to refine the obtained data by the Rietveld 

method [30]. The morphological characteristic of the prepared electrolyte was examined using FEG-SEM (JSM-7610F). 

The SEM morphological data was collected in an atmospherically-isolated chamber. The FTIR spectra was recorded by 

PerkinElmer Spectrometer for diffuse infrared spectroscopy in air at room temperature. Powder samples were 

standardized using a run with optically-transparent KBr, as a reference.  

The electrochemical properties were examined using EIS. A Solartron 1260 frequency response analyzer was 

connected to a ProboStat (NorECs, Norway) system to measure impedance in a frequency range from 6 MHz to 1 mHz 

and the applied sine wave amplitude was 1 V rms. The sintered pelles of the as-prepared material (13 mm diameter and 

0.5 cm2 platinum pasted electrodes) were used for the impedance measurements. Impedance data was collected during 

the cooling cycle from 1000 to 150℃ in steps of 50℃ under a dry Ar atmosphere which was dried by passing Ar gas 

through two beds of P2O5 desiccant before entering the conductivity cell. At each temperature, enough time was allocated 

to ensure stability before impedance spectra was recorded. The impedance refinement program Z-View (Scribner 

Associates Inc.) was used to fit the experimental impedance data. The brick-layer model was employed to represent the 

electrical response of the samples. Each arc from the experimental data represented a parallel combination of a resistance 

(R) and a constant-phase element (CPE). The resistance could not be extracted reliably because of the high impedance at 

low temperatures, e.g. T ≤ 200℃. No correction for sample porosity was applied to the conductivity data. 

 

3. Results and Discussions 

3.1 Phase Analysis 

Figure 1 (a) shows the refinement of X-ray diffraction (XRD) patterns of all SWO compound sintered at 1000℃. In 

this composition, Strontium (Sr) was the A-site component and Tungsten (W) was the B-site component. XRD was 

carried out on the prepared samples. The patterns can be indexed as single phase scheelite type tetragonal symmetry in 

the I41/a space group. There are no additional or intermediate phases were detected in SWO, which confirm the previous 

studies [28,29,31]. Due to behavior of Strontium as the highly chemically reactive and naturally stable element and 

Tungsten as heaviest and stable element, there is no changes of phases in SWO. Table 1 shows the unit cell parameters, 

bulk and theoretical densities and Refinement factors. Figure 1 (b) shows the schematic 3D polyhedral diagram of the 

tetragonal structure using VESTA software. 
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Fig. 1 - (a) Rietveld refinement profile; (b) schematic 3D polyhedral diagram of SWO in a unit cell 

 

The figure 1 (b) also represents scheelite type structure. In the scheelite-type ABO4 Structure, each octahedral A 

cation (Sr) is coordinated with eight oxygen atoms and each tetrahedral B cation (W) is coordinated to four oxygen atoms, 

which are common binary oxides in both natural and synthetic systems. There is no possibility for the vacancies in the 

anionic or cationic subdomains. The presence of Sr vacancies in the structures and the ordering of A cations and vacancies 

can furnish a new means for modifying their properties. Cation deficient in the compound can be considered as good 

ionic conductors. Thus the presence of a small percentage of dopants leads to an increased conductivity [32]. 

Table 1 - Rietveld refinement analysis of X-ray diffraction data for SrWO4 

Sample Parameters SWO 

Space group I 41/a 

Chi2 (χ2) 13.6 

Cell parameter (Å) 
a = b 5.361(1) 

c 11.828(4) 

Density 6.328 

Vol (Å) 340.071 

No. of fitted parameter 20 

Rf - factor 7.19 

Rp 16.6 

Rwp 21.2 

 

3.2 Morphology Analysis 

To observe the microstructure morphology of the SWO electrolyte, SEM analysis was carried out. Figure 2(a) shows 

the surface microstructure of SWO electrolyte. The surface of the sample was free of cracks. The grains were completely 

compacted next to each other, of a large size and well-developed. No traces of liquid or secondary phases were found at 

the grain boundary region in the investigated sample. This suggests that the electrolyte material has a high-density and is 

non-porous. The grain sizes are 1-10 µm for all compositions. The large grain size offers lower grain boundary resistance, 

which is beneficial for ion conduction. Figure 2(b) represents the pattern of compositions by X-ray analysis. Each 

chemical element has a unique electron movement that can be interpreted as energy. The figure 2 (b) can be used to 

describe the intensity of all SWO elements. Carbon peaks are also present because of the carbon coating on the sample’s 

surface. The elemental composition of the compound is shown in Table 2. The results from EDX are reasonably 

comparable to formula values, because X-ray can be effectively used to direct the elements of compounds accurately. 

The use of X-ray in XRD and EDX analysis is to identify the elements of the compound. 

 

3.3 Bonding Analysis 

The FT-IR spectra of SWO compound was measured in the wave number region of 4000 cm−1 to 500 cm−1 with a 

resolution of 2 cm−1. Figure 3 (a) presents the FT-IR spectra of SWO sample. The characteristic strong and broad 

absorption bands have two vibration peaks at 938 cm−1 to 778 cm−1 were assigned to O-W-O anti-symmetry stretching 

vibrations in the [WO4] tetrahedron. The sharp absorption peaks appeared due to symmetric bending vibrations in the 

[WO4] tetrahedron. Adsorbed water molecules on the surface of the sample at 1715 cm−1 was also detected. The photo 
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catalytic activity and proton conductivity were closely related to the number of -OH groups, which present on the surface 

of catalyst. Because the photo-generated holes (h*) react with water and generate OH radicals, which can oxidize the 

organic pollutants. Therefore, an increase in the number of surface -OH groups could improve the proton conductivity. 

After hydration, the XRD was carried out to check the phase stability. Figure 3(b) shows the XRD curves of SBW1 before 

and after hydration process. There was no phase change during hydration. 

 

 

Fig. 2 - (a) SEM morphology; (b) EDX spectra of SWO 

Table 2 - Compositional distribution of SrWO4, where %F is composition from compound formula and %EDX 

is composition from EDX 

Samples Elements Sr W O 

SBW1 % F 16.67 16.67 66.67 

% EDX % atomic 18.73 12.23 69.04 

% Wt 32.86 45.03 22.11 

 
Fig. 3 - (a) FTIR of SWO; (b) Comparison of XRD after hydration test 

 

3.4 Ionic Conductivity 

The ionic conduction (as part of the electrochemical properties) of the SWO sample was investigated using AC 

impedance spectroscopy. Figure 4(b) shows impedance spectrum of SWO recorded at 1000 – 800℃ under dry Ar 

conditions with bulk and grain boundary (GB) response.  A circuit model was used to estimate the GB and bulk resistance 

of the sample compositions. The electrode interface response was excluded from the fitting and the total resistance was 

calculated from the sum of the GB and bulk resistance. The presence of GB resistance in the prepared samples is indicated 

by the observation of more than one semicircle around 700°C under dry Ar condition. From 700°C to 1000°C, the bulk 

is resolved from the intercept at higher frequency intercept with real axis. The observed total frequency range was 0.1 Hz 
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to 6 MHz at temperature range of 700°C to 1000°C. As example, at 1000℃ the frequency range was 1 KHz to 6 MHz. 

Above 700°C, it was difficult to separate the bulk from the grain boundary conductivities although typically 2 RC 

(resistance in combination with parallel to CPE) equivalent circuits in series (see figure 4(b) inset) is used. 

 

 
Fig. 4 - (a) Arrhenius plot of SWO; (b) Impedance spectra of SWO at 800 to 1000℃ under dry Ar 

Figure 4(a) shows the Arrhenius plot of SWO sample in dry Ar atmosphere. The total conductivity was 3.68×10-9, 

2.58×10-8, 1.89×10-7 and 1.98×10-6 Scm-1 at 700, 800, 900 and 1000℃ respectively for SWO under dry Ar atmosphere.  

Activation energies (Ea) for the total conductivity in dry Ar conditions was 2.2 eV. We also observed a substantially 

better fit with the addition of inductance, especially at higher temperature ranges (above 1000°C). The actual capacitance 

can be calculated using the expression given by Afif et al and Azad et al. [33,34]. The capacitance observed with the high 

frequency part semicircle was in the range of 10-12 -10-8 F and that of intermediate frequency range was 10-8-10-6 F 

corresponding to bulk/grain-boundary and sample/electrode response, respectively [34,35]. The values of the chi-square 

from the equivalent circuit model fit of EIS were 4.51×10+12, 3.62×10+11, 2.12×10+11, 1.17×10+10, 2.85×10+09, 3.34×10+07 

and 4.84×10+06 for the temperature range of 700°C to 1000°C respectively. 

 

4. Conclusion 

In this research study, a single phase SrWO4 electrolyte was synthesized via solid state reaction and the subsequent 

SWO electrolyte was also successfully synthesized and characterized. The Rietveld analysis of XRD data showed a 

tetragonal scheelite structure (S.G. I41/a). SEM morphological images showed a high density and non-porous materials 

which is important for electrolyte application. In terms of conductivity, the compound shows low ionic conductivity. 

SWO exhibited an ionic conductivity of 1.98 × 10−6 S cm-¹ at 1000℃ under dry argon conditions. From the obtained 

results, it indicates that these kinds of materials have a very good microstructure and significant conductivity with good 

stability which can be applied as electrolyte materials for SOFCs.  
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