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1. Introduction 
Autism spectrum disorder (ASD) is one of the mental disorders identified by a wide range of symptoms and levels 

of disability that influences upon person performances and communications with others. The problem in ASD treatment 
has no definite cure, and one possible option is to control the disorder's progress. In most ASD cases, the diagnosis is 
only made after the onset of symptoms [1]. ASD symptoms usually appear at around 3-year-old and tend to continue 
firmly into adolescence and adulthood; therefore, early diagnosis of ASD can play an essential role in addressing above 
issues and improve the life quality of ASD individuals and their families. A recent study reported in [2] by the United 
States Centre for Disease Control and Prevention (CDC) showed that 1 in 59 children have ASD in the U.S. The world 
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ASD statistic based on the World Health Organisation (WHO) reports has indicated that 1 in 160 children in the world 
has ASD [3].  

Effective treatments and services can moderate the symptoms and improve the ASD patients’ lives, therefore, 
several studies attempt to use brain imaging modalities for diagnosis and early detection of ASD. The brain imaging 
modalities such as electroencephalography (EEG), magnetoencephalography (MEG), and functional magnetic 
resonance imaging (fMRI) are commonly used, especially under resting state term [4]. As a non-invasive tool, fMRI 
has the best spatial resolution among the methods mentioned above, and it has a sufficient time resolution compared to 
other methods [5]. The fMRI uses the blood-oxygen-level dependent (BOLD) method to represent the blood flow 
changes and brain regions' blood oxygenation conditions [6].  

In particular, the resting-state fMRI (rs-fMRI) is known to be extensively used to detect functional brain regions. 
Since the ABIDE dataset availability, many studies have attempted to develop ASD classification models based on rs-
fMRI data. For example, Abrahman et al. [7] proposed several machine learning frameworks for ASD classification 
and achieved an accuracy of 66.9%, with a sensitivity rate of 53.2%, and a specificity rate of 78.3% using support 
vector machine (SVM) classifier. Also, Heinsfeld et al. [8] examined patterns of functional connectivity matrix to 
optimise the classifier accuracy based on deep learning (DL) networks. The model performance achieved 70% 
accuracy, 74% sensitivity, and 63% specificity. Recently, Zeinab et al. [9] attempted to improve the automated model 
performance accuracy for ASD detection by applying a trained functional connectivity matrix with convolution neural 
network (CNN). Their proposed model achieved 70.22% accuracy, 77% sensitivity, and 61% specificity.  

Apart from the above studies, Aghdam et al. [10] proposed an automated model for ASD diagnosis based on 
structural MRI images using CNN. The best result was accuracy 72%, 71% sensitivity, and 73% specificity. Most of 
the recent fMRI studies assumed that brain activities are stable during the scanning session and ignored the temporal 
dynamic features [11]. This supposition may lead to substantial information loss [12, 13]. Although static features 
reduce the computational complexity by the assumption of activity stability during a time, it might not consider 
fluctuations in the scan period. Some studies suggested that analysing temporal dynamic features would result in a 
better distinguishing between normal and abnormal brain activities [14, 15]. The purpose of this study is to present 
several CNN architectures to diagnose ASD based on temporal dynamic features of BOLD fMRI signals. Moreover, 
the classification results are improved on a sample of multi-data sources from ABIDE datasets, in which developing the 
reliability and reproducibility of research outcomes are examined. 

 
2. Material and Method 
Several CNN architectures are trained to investigate the autism occurrence in the scalogram images. As shown in the 
flowchart Fig.1, the BOLD fMRI signals are converted to scalogram images to be the input to four pre-trained CNN 
architectures to extract the learned features. Furthermore, the extracted features are tested with two classifiers, SVM 
and KNN for ASD and normal cases classification. Descriptions of the subject method of experiments are explained in 
the subsequent sections. 

 
Fig. 1 - General methodology for classification of resting-state BOLD fMRI signals using wavelet transform 

and pre-trained CNNs 
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2.1 Subjects 
The resting-state fMRI data of 41 ASD and 41 normal control (NC) cases were gathered from the Autism Brain 

Image Data Exchange (ABIDE) sources [16], taken from multiple independent neuroimaging sites. Detail of the 
datasets is provided in Table 1. 

Table 1 - Sample size and data sources 
# Source ASD NC Sub-Total Time-point  TR (sec) 

1 CALTECH 15 15 30 145 2 
2 CMU 14 14 28 315 2 
3 KKI 12 12 24 151 2.5 
 Total 41 41 82   

          Legend: CALTECH: California Institute of Technology, CMU: Carnegie Mellon University, KKI: Kennedy Krieger Institute, 
           TR: Repetition Time 

2.2 Data Pre-processing 
Like other medical fields data, raw data is typically pre-processed for reduction of noise and artefacts. These steps 

are crucial before proceeding to the subsequent analyses. The DPARSF is a MATLAB toolbox for fMRI data pre-
processing and analysing [17]. In fMRI data, some spikes or ghosting may appear due to electrical instability of an MRI 
system. Therefore, the first step is performed by discarding the first 5-volume, perceiving only volumes at which the 
MRI system has reached an equilibrium. The next step is to slice time correction since the differences in the acquisition 
time of different voxels can be problematic for the analysis of fMRI data. Then, realignment of head motion is 
performed to remove the mismatch of head location in the time series of images. 

Subsequently, spatial normalisation is applied to transform the brain images into a common template space to align 
the brain size, shape, and orientation across subjects. The functional images are normalised into Montreal neurological 
institute (MNI) template by using unified segmentation on the T1 images. Then, spatial smoothing is applied with a 
Gaussian kernel of 8 mm full-width at half-maximum (FWHM) to improve the signal-to-noise ratio (SNR). The 
automated anatomical labelling (AAL) is selected as the standard brain atlas to divide the brain into 116 regions of 
interest (ROIs) [18]. The set of ROIs that are worked together in a network varies with cognitive states. The default 
mode network (DMN) is selected because when a subject is awake and at rest, the DMN is more active than other brain 
networks [24]. Hence, DMN provides good indication of brain’s neuronal activities of ASD subjects, to be extracted in 
terms of temporal dynamic features. The DMN regions on the right and left hemisphere of human brain are listed in 
Table 2.  

Table 2 - 22 regions of default mode network based on AAL atlas 
Label Anatomical Label Anatomical 

29 Insula-L 30 Insula-R 
31 Cingulum-Ant-L 32 Cingulum-Ant-R 
35 Cingulum-Post-L 36 Cingulum-Post-R 
37 Hippocampus-L 38 Hippocampus-R 
39 ParaHippocampal-L 40 ParaHippocampal-R 
55 Fusiform-L 56 Fusiform-R 
59 Parietal-Sup-L 60 Parietal-Sup-R 
61 Parietal-Inf-L 62 Parietal-Inf-R 
65 Angular-L 66 Angular-R 
67 Precuneus-L 68 Precuneus-R 
85 Temporal-Mid-L 86 Temporal-Mid-R 

 
2.3 Temporal Dynamic Features 

First, the time-frequency components are extracted at each signal by using a continuous wavelet transform (CWT). 
The CWT coefficient is defined as the convolution of the BOLD signal x(t) with the scaled and translated version of the 
mother wavelet 𝜑𝜑𝑎𝑎 ,𝑏𝑏(𝑡𝑡) [20] as shown in equation (1). CWT has become a popular tool in bio-signal analysis [21]. 

  
𝐶𝐶𝐶𝐶𝐶𝐶(𝑎𝑎,𝑏𝑏) =  1

√𝑎𝑎
 ∫ 𝑥𝑥(𝑡𝑡) .𝜑𝜑∗∞
−∞  �𝑡𝑡−𝑏𝑏

𝑎𝑎
�  𝑑𝑑𝑡𝑡,             (1)      
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where variable a denotes wavelet scale, b denotes time shift position and * denotes the complex conjugate [22]. The 
complex Morlet wavelet is selected as the mother wavelet since Morlet has the best ratio of (1.03) between frequency 
band and wavelet scale, which helps to interpret results in the frequency domain [20]. By varying the wavelet scale, a  
and translating along with the localized time index, b one can construct a picture showing both the amplitude of  
frequency versus the scale. The scalogram image provides the time-frequency components of BOLD signals. Based on 
the number of DMN regions, the total number of generated scalograms is 22 images/subject giving a total of 1804 
images for 82 subjects. The proposed method aims to apply scalogram images as input to pre-trained convolutional 
neural networks (CNN), which exhibits competitive performance for the ASD detection. 

 
2.4 Feature Extraction using Pre-trained Deep Neural Networks and Classification 

Deep learning is at the core of state-of-the-art machine learning models in computer vision applications. 
Convolutional neural network is one of the essential deep neural building blocks related to the application of local 
convolution filters for extracting regional information. It is a unique network that has been utilised in medical image 
analysis that provides excellent support in the improvement of biomedical research [23].  

In our study, selected CNN architectures are experimented including ResNet-18 [25], GoogLeNet [21], ResNet-
101 [25] and DenseNet-201[26] for features extraction, which was utilised in previous studies with scalogram images 
[21].  The number of layers of ResNet-18, GoogLeNet, ResNet-101 and DenseNet-201 are respectively 71, 144, 347 
and 708-deep. The CNN architectures were pretrained on more than a million images from the ImageNet database [27] 
for classification into 1000 object categories, such as keyboard, mouse, pencil, and many animals. 

The features from the pretrained CNN are obtained from the layer activations of the network. After converting the 
BOLD signal to scalogram images, the data is split into 70% and 30% for training and testing, respectively. The 
extracted features from the pre-trained CNN models are obtained. These features are fitted to two classifiers, namely, 
support vector machine (SVM) and K-nearest neighbours (KNN). 

Finally, the performance of each model is evaluated based on evaluation metrics as shown in equations (2-5). 
Where TP (True Positive) is a definitive score where the model correctly predicts the ASD patients, and TN (True 
Negative) is a definitive score where the model correctly predicts the normal cases. Conversely, FP (False Positive) is a 
definitive score where the model incorrectly predicts the ASD patients, and FN (False Negative) is a definitive score 
where the model incorrectly predicts the normal cases. 

               
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝐴𝐴𝐴𝐴 =  𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 
                                (2) 

 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝐴𝐴 =  𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 
                                           (3) 

 
𝑃𝑃𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃𝑆𝑆 =  𝑇𝑇𝑇𝑇 

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇  
                                            (4) 

  
𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆𝑡𝑡𝐴𝐴 =  𝑇𝑇𝑇𝑇 

𝐹𝐹𝑇𝑇 + 𝑇𝑇𝑇𝑇
                                          (5) 

                
3. Results and Discussion 

In this section, the feature of the scalogram for ASD vs. NC BOLD signals from 22 regions of DMN is first 
extracted using pretrained CNN architectures and then evaluated using 2 classifiers, SVM and KNN. In the 1st 
experiment, classification of ASD vs. NC is evaluated using the feature vectors extracted from ResNet-18, GoogLeNet, 
ResNet-101 and DenseNet-201. The length of feature vectors extracted from each CNN architecture are shown in Table 
3. Notably, the length of feature vector depended on the depth of features extraction layer, for instance the feature 
vector length from 58-layer DenseNet-201 is relatively low compared to another deeper feature extraction layer  of 
ResNet-101, GoogLeNet.  

Table 3 - Feature extraction using pre-trained CNN architectures 
Pre-trained CNN Feature extraction layer  Layer number Total layer Size of feature vector 

ResNet-18 res3b  34 71 n × 100352 
GoogLeNet inception_3a-output 25 144 n × 200704 
ResNet-101 res3b 48 347 n × 401408 

DenseNet-201 conv3_block1_concat 58 708 n × 125440 
        n = number of scalograms   
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The 22 regions of DMN are selected for extraction of the BOLD signals. Figure 2 shows the time series plot of 
BOLD signal and scalogram images of one DMN region (Insula-L), as an example for an ASD case and NC case.  For 
the classification task, four CNN architectures are trained using the scalogram, and the features from a specific layer as 
shown in Table 3 are extracted as input to KNN and SVM. The evaluation results based on testing dataset are shown in 
Table 4. The best performing network for classification of the scalogram images is obtained from DenseNet-201 and 
input to KNN classifier, with k=1. The performance of the model has achieved an accuracy of 86.0%, a sensitivity of 
86.0%, and specificity of 86.0%. Hence, the DenseNet201 give the best performance, followed by ResNet-101, 
GoogLeNet, ResNet-18 because of the feature extraction layer ‘conv3_block1_concat’ of the DenseNet-201 is located 
at layer 58 from 708 layers, which is at a deeper layer compared to other CNN architectures. Hence, better feature 
representation is provided by the DenseNet-201 as evident from the performance results shown in Table 4. The better 
performance of DenseNet-201 can be attributed to its unique dense block architecture, where each layer receives 
feature maps from all preceding layers giving features at all complexity levels. Although relatively deep network 
compared to ResNet, the use of dense block architecture allows the DenseNet-201 to be thinner and compact with a 
smaller number of parameters than ResNet.  

Performance using 3 types of kernel function for SVM and number of neighbourhoods for KNN is tabulated in 
Table 5 and Table 6, respectively.  Based on the performance values evaluated for 3 kernel functions, linear-SVM 
achieved the best result compared to other kernels. Similar test for KNN is evaluated at 1, 3, and 5-neighbourhood and 
the results of accuracy, sensitivity and specificity are shown in Table 6 indicates k =1 gives the best performance. The 
subsequent evaluation of the classification model (DenseNet-201+KNN) is based on KNN with a neighbourhood of 1. 

 

 
  

Fig. 2 - Time-series plot of BOLD signals and the corresponding time-frequency scalogram for NC (1st row) and 
ASD (2nd row) 

Table 4 - Percentage of accuracy, sensitivity, specificity for all proposed models based on testing dataset 
Pretrained CNN Classifier   Accuracy  Sensitivity Specificity 

GoogLeNet KNN 80.0 67.4 97.2 
ResNet-18 KNN 77.0 56.4 73.1 
ResNet-101 KNN 84.4 73.4 82.4 

DenseNet-201 KNN 86.0 86.0 86.0 
GoogLeNet SVM 77.2 65.4 73.2 
ResNet-18 SVM 78.0 69.1 80.4 
ResNet-101 SVM 77.7 67.1 72.2 

DenseNet-201 SVM 75.0 70.6 73.0 

The confusion matrix of the best model, DenseNet-201+KNN for classifying scalograms of ASD vs. NC BOLD rs-
fMRI signals is depicted in Figure 3 giving 86% testing accuracy. To further test the generalizability of the model to 
unseen data, the model is evaluated using k-fold cross validation. The performance evaluation of DenseNet-201+KNN 
for (5, 10, 15, 20)-fold is presented in Table 7. From Table 7, the best accuracy, sensitivity, specificity, and precision is 
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obtained at 15-fold, at 86.6%, 86.9%, 86.5, and 86.3% respectively. These results provide a good indication of no 
overfitting and that the model has achieved good generalization to unseen data.  

Table 5 - Percentage of accuracy, sensitivity, specificity for DenseNet-201+SVM model with different SVM 
kernel functions 

Kernel Accuracy Sensitivity Specificity 
Linear 75.0 70.6 73.0 

Polynomial 64.3 29.4 58.4 
Gaussian 50.0 0.0 50.0 

Table 6 - Percentage of accuracy, sensitivity, specificity for DenseNet-201+KNN model with different nearest 
neighbour, k value 

k-NN Accuracy Sensitivity Specificity 
1 86.0 86.0 86.0 
3 79.8 81.6 80.9 
5 76.8 75.7 76.3 

    

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3 - Confusion matrix for DenseNet201+KNN model based on testing dataset 

The performance comparison of proposed methods with previous studies based on accuracy, sensitivity, and 
specificity metrics are shown in Table 8. ASD prediction based on Pearson correlation coefficients between BOLD 
signals [7-9] and of structural MRI images [10] can only yield the highest accuracy of 72.2%, lower to the time-
frequency components of BOLD signals. Our proposed method that input CWT of 21 brain regions of DMN to CNN 
with KNN classifier has shown to result in a good accuracy of 86.6%, that is 13.9% higher than the structural MRI 
images-based method proposed by Aghdam et al. [10]. 

Table 7 - Percentage of accuracy, sensitivity, specificity, and precision (± standard deviation) for DenseNet-
201+KNN model using k-fold cross-validation 

k-fold Accuracy Sensitivity Specificity precision 
5-fold 84.8 ± 1.9 85.0 ± 2.6 84.6 ± 2.1 84.5 ± 2.33 
10-fold 86.5 ± 2.4 86.6 ± 3.4 86.6 ± 2.3 86.6 ± 2.5 
15-fold  86.6 ± 3.2 86.9 ±3.5 86.5 ± 4.1 86.3 ± 4.7 
20-fold 86.6 ± 3.8  87.1 ± 4.4 86.3 ± 4.5 86.0 ± 5.0 
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Table 8 - Comparison of the best proposed model with previous studies based on percentage of accuracy, 
sensitivity and specificity 

Method Subjects # Accuracy Sensitivity Specificity 
ASD NC 

Abrahman et al. 2017 [7] 871 66.9 53.2 78.3 
Heinsfeld et al. 2018 [8] 505 530 70.0 74.0 63.0 
Aghdam et al. 2019 [10] 54 62 72.7 71.2 73.4 

Sherkatghanad et al. 2020 [9] 871 70.2 77.0 61.0 
Our proposed method 41 41 86.6  86.9 86.5 

 
4. Conclusion 

In this paper, ASD classification techniques based on temporal dynamic features of BOLD signals from DMN 
regions and features extracted using pre-trained CNN models are investigated. The temporal dynamic feature of BOLD 
signal is extracted using wavelet transform, which basically represents the time-frequency component in 2D format, 
known as scalogram. The scalogram images are fed to selected ImageNet pre-trained CNN models, ResNet-18, 
GoogLeNet, ResNet-101 and DenseNet-201for feature extraction. From the feature extraction layer of the CNN 
models, 1D feature vectors are extracted to be the input of a classifier. Tested on KNN and SVM, the DenseNet-
201+KNN yielded the best classification performance and outperformed recently published algorithms. It can be 
concluded that the DenseNet-201 backend network provides better scalogram features than other networks at the best 
accuracy of 86.6%. This good performance can be attributed to its densely connected convolutional layer, that provides 
a deeper network but having thinner and compact architecture with relatively smaller number of trainable parameters. 
These results have indicated that the proposed methods can be considered as a promising tool for diagnosing ASD and 
other brain disorders. On a different note, some recommendations for future works are given here; first, the sample size 
is 82 subjects from three ABIDE data sources might be considered a moderate size. Thus, there is a need to use more 
subjects to build a more robust model. Secondly, this work only utilized the temporal dynamic features of DMN thus, 
other brain networks should be considered. Besides, extraction of the dynamic features of BOLD signals such as 
wavelet coherence transform between brain networks are to be investigated in the future, for better classification of 
ASD cases.  
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