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1. Introduction 
 Ultrasonography (USG) is a helpful medical imaging modality for investigating the human body's soft tissue 
anatomically. The advantages of USG are well known, such as its cost-effectiveness, portability, non-invasiveness,  and 
safety better than X-ray imaging. Current studies suggest that Point-of-care ultrasound (POCUS) for lung imaging has 
significant potential as a diagnostic modality for pathological lung due to COVID-19 [1-7]. POCUS can be used to scan 
a patient’s body directly (bedside). Its imaging device can be transported to wherever the patient is located without a 
specific scanning room [8], and the image can be interpreted directly on the spot. The application of POCUS can reduce 
the risk of the infection’s spreading. 
 In the current situation, due to COVID-19 pandemic, the bedside/visual interpretation of lung ultrasonography (LUS) 
to assess pathological conditions of the lung could be overwhelming for clinicians. In this case, an image processing 
procedure to enhance the visibility of the main feature on the LUS image becomes a vital necessity to help speed the 
diagnostic time and increase the accuracy.  
 Lung ultrasonography (LUS) image interpretation for the diagnostic of lung abnormalities is based on the appearance 
of specific image artifacts.  Evaluation of pleural lines is one of the vital aspects of LUS imaging. Generally, the average 
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healthy lung can be characterized by the continuous pleural line (A-line) and the regular repeated horizontal A-line with 
a fixed distance between the lines. These A-lines are generated by a reverberation or multiple reflections from the pleura 
with “air space” underneath it. On the contrary, the abnormal lung can be characterized by the discontinuous pleural line 
and the A-line pattern’s irregularities because of a specific condition, e.g., thickening of A-line due to a fluid present in 
the subpleural interlobular septum. In more severe cases, vertical comet tail artifacts (B-lines) appear under the A-line 
due to intense multiple reflections from the elements with a large gradient of acoustic impedance around or underneath 
the pleura, e.g., fluid-rich structures and air-space in subpleural interlobular septum and alveoli. A healthy lung 
correlates with a reflecting pleural line and ideally produces a higher intensity of the pleural line [9-12].  
 This work focuses on developing an image processing framework for pleural line detection enhancement in LUS 
image as an early stage of further lung image interpretations in pneumonia patients. The proposed scheme is based on a 
top-hat morphological grayscale filter with a texture structure element. The adaptive structural low pass filter considering 
local shape parameters is used to suppress noise and keep the curve line information related to the pleural line. 

 
2. Methodology 
2.1 Image Processing for Pleural Line Detection 

Usually, LUS imaging is performed to acquire lung anatomy that represents in time series of image. In LUS, 
several factors must be considered to optimize the image quality. The setting of imaging parameters in USG machines 
(i.e., power of US wave, bandwidth and central frequency of the pulse, setting of time gain compensation (TGC) to 
optimize contrast), and type of transducer (i.e., convex or linear and frequency bandwidth transducer) is correlated with 
image quality. 

On a healthy lung, a surface of the pleural and lung cavity is an almost perfect reflector. It generates horizontal line 
artifacts and appears as multiple A-lines due to reverberations between the probe and the pleural line [10,18]. Some 
image processing schemes have been proposed for pleural line detection. In [11,12], contrast enhancement and 
morphological filtering with the flat structuring elements method were proposed for the pleural line detection. A 
method based on spatial filtering, segmentation, and machine learning was reported in [13]. Another technique for 
pleural line detection is proposed by Carrer, L., et al. [10] using a circular averaging filtering and the Viterbi algorithm.  
The Radon transform was also proposed to identify the pleural line by searching for the brightest horizontal line 
[19,20]. 
 

Image Processing Scheme 

Pleural Line Detection 

Lung 
Ultrasonography 
(LUS) Imaging

pleural line 

Convex Transducer Linear Transducer

 
Fig. 1 - General framework concept of pleural line detection 
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The general framework proposed in this work is shown in Fig. 1. On the image processing scheme, two image 
processing steps are performed, i.e. (1). top-hat morphological grayscale 2D-filter with a texture structure element and 
(2). adaptive structural 2D low pass filter. Further description of the proposed processing framework concept is 
explained in the next section. 
 
 
2.2 Gray Scale Morphological Filter   

The top-hat grayscale morphological filter is an operation to extract a pleural line from an undesired background 
[15,16] using an operator for closing or opening the morphology of the image. Given A(x,y) and B (j,k) describe the 
gray-level of LUS image and the structural element matrix respectively, the definition of grayscale opening and 
grayscale closing [21] are: 
 

Opening: OG (A,B) = DG (EG(A,B),B)   (1) 
 

Closing:  CG (A,B) = EG (DG(A,B),B)   (2) 
 

Table 1 - Type of top-hat grayscale morphological filter and  
examples of the results for pleural line detection enhancement in LUS grayscale image 

 
 
 

Type of top-hat filter 
(THF) 

 
 
 

Operator formulation 

A(x,y) represents LUS grayscale image 
with the pleural line 

 
 

THF white texture 

(THF-WT) with size 

B(j,k) is 13 × 13 

Aht = A - OG(A,B) Aht 

 
THF black texture (THF-

BT) with size B(j,k) is 

13 × 13 

Aht = CG(A,B) - A Aht 

 
THF white object 

 (THF-WO) with size 

B(j,k) is 13 × 13 

Aht = OG(A,B) - EG(A,B) Aht 

 
THF black object  

(THF-BO) with size 

B(j,k) is 13 × 13 

Aht = OG(A,B) - CG(A,B) Aht 

 
     

Where DG and EG represent grayscale dilatation and erosion operation, respectively. Grayscale dilation DG(.) and 
grayscale erosion EG(.) are given as:  
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𝐷𝐷𝐺𝐺(𝐴𝐴,𝐵𝐵) = 𝑚𝑚𝑚𝑚𝑚𝑚[𝑗𝑗,𝑘𝑘]∈𝐵𝐵{𝐴𝐴[𝑥𝑥 − 𝑗𝑗, 𝑦𝑦 − 𝑘𝑘] + 𝑏𝑏[𝑗𝑗,𝑘𝑘]  (3) 

 
𝐸𝐸𝐺𝐺(𝐴𝐴,𝐵𝐵) = 𝑚𝑚𝑚𝑚𝑚𝑚[𝑗𝑗,𝑘𝑘]∈𝐵𝐵{𝐴𝐴[𝑥𝑥 − 𝑗𝑗,𝑦𝑦 − 𝑘𝑘] + 𝑏𝑏[𝑗𝑗, 𝑘𝑘]  (4) 

 
The four types of top-hat grayscale morphological filters and the examples of THT-WT, THT-BT, THF-WO, and 

THF-BO applications in the images are summarized in Table 1. The subtraction between the LUS grayscale image with 
the opening operation is a candidate for image processing on the following steps. 
 
2.3 Adaptive Structural 2D Low Pass Filter 

The output of the processing step in the top-hat filter (Aht) is still required further processing. The conventional low 
pass filtering (LPF) reduce noise by assuming that the signal at some point changes slowly compared to the noise that 
formulated as: 
 

𝐴𝐴𝐴𝐴(𝑚𝑚, 𝑛𝑛) = ∑ ∑ 𝑓𝑓(𝑥𝑥 − 𝑗𝑗,𝑦𝑦 − 𝑘𝑘)𝐴𝐴ℎ𝑡𝑡(𝑗𝑗, 𝑘𝑘)𝑘𝑘=𝑤𝑤
𝑘𝑘=−𝑤𝑤

𝑗𝑗=ℎ
𝑗𝑗=−ℎ         (5) 

 
The size of the windows filter f(.) is 2w + 1 and 2h + 1, respectively. For LPF with the Gaussian filter, the kernel 

filter size and variance (σ) determine the output of filtering image Ao(.). The Gaussian LPF can reduce background 
noise by assuming the desired image and the noise are spectrally separable. In the LUS image, this is only partly true 
due to noise from the lung region with low acoustic impedance, such as an air region.  

In this case, a scheme called adaptive filter is proposed. The main idea of the adaptive filter is applying local 
adapting to the shape of the filter windows. The parameters related to the structure of the LUS image are included as 
parameters in the adaptive filter [14]. The structural parameters are based on scale and orientation. The idea of adaptive 
filtering is depicted in Fig. 2. 
 

Top-Hat Filter Adaptive Filter Output LUS Image with 
Pleural Line Detection Enhancement 

Parameters:
scale and orientation Sequence of LUS Images (An)

 
 

Fig. 2 - The concept of adaptive filtering 
 

The parameters of orientation and curvature are derived using gradient structure tensor (GST). The basic of GST 
consists of these following steps: 
 

Step 1: Estimating the gradient of g = ∇Aht at scale σg. The Aht convolving with the first-order derivative of a 
Gaussian G(.). For two dimensional  image, the component gradient is:  
 

𝑔𝑔𝑖𝑖 = 𝐴𝐴(𝑋𝑋) ∗ 𝜕𝜕
𝜕𝜕𝜕𝜕
𝐺𝐺�𝑋𝑋;𝜎𝜎𝑔𝑔�,𝑋𝑋 = {𝑥𝑥,𝑦𝑦} (6) 

 
Step 2:  The mapping of  GST using the dyadic product and averaging the tensor component Tij at scale σT. The 

GST defined by: 
 

𝑇𝑇 ≡ 𝑔𝑔𝑔𝑔𝑇𝑇�����   (7) 
 

The elements of the GST can be viewed as gradient energies. In the computation of local average or spatial 
integration, the tensor component is convolving with a Gaussian kernel G(.) that is defined as: 
 

𝑇𝑇𝑋𝑋��� = 𝑇𝑇𝑋𝑋 ∗ 𝐺𝐺(𝑋𝑋;𝜎𝜎𝑇𝑇),𝑋𝑋 = {𝑥𝑥, 𝑦𝑦} (8) 
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In the computation of local average or spatial integration, the tensor component is convolving with a Gaussian 
kernel. The tensor scale is usually chosen three to ten times the gradient scale: 3 σg < σT < 10σg. 

The advantage of averaging the tensor is that the rapid change in the orientation due to noise on the gradient image 
can be suppressed, resulting in a smooth orientation estimate. With the proper chosen value of σg and σT, a small 
discontinuous line may be smoothed while still keeping the main structure of the line. In Fig. 3, the filtering process of 
Iht (THF-WT) based is shown. The comparing results from the conventional LPF filter (σ = 2) and adaptive filter (σg  = 
2 and σT = 5) are illustrated in Fig. 3. 
 

 
 

 
  
Fig. 3 - Comparison results from (top) conventional LPF filter (σ = 2);  and (bottom) adaptive filter  

(σg  = 1 and σT = 5) with LUS image shown in Table 1 
 

3. Results and Discussion 
3.1 Results for the Convex Transducer 

The open data set of video LUS [17] was used to evaluate our image processing framework. The data set A and B 
were acquired using a convex transducer with a frame rate of about 50 fps, resolution 852 × 852, and the frame length 
in about n = 50 frames. The parameters of processing steps are tabulated in Table 2. 
 

Table 2 - Processing parameters for the convex transducer 

Data set THF-WT parameters Adaptive filtering 
A Windows shape: rectangular 

with size 13 × 13 
σg  = 1 and σT = 5 

B Windows shape: rectangular 
with size 17 × 17 

σg  = 1 and σT = 10 

 
The results from data set A and B are illustrated in Fig. 4 and Fig. 5, respectively. Using only THF-WT, the pleural 

lines in 4 different frames are shown. The remaining background noise and discontinuous lines can be suppressed and 
corrected using THF-WT and the adaptive filter. 
 



Suprijanto et al., International Journal of Integrated Engineering Vol. 13 No. 5 (2021) p. 98-106 

 103 

 
Fig. 4 - The resulting pleural line detection from data set A; the pleural line selected from the region of interest 

(marked by the yellow box) is detected 
 

 
Fig. 5 - The resulting pleural line detection from data set B; the pleural line selected from the region of interest 

(marked by the yellow box) is detected 
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3.2 Results for the Linear Transducer 
The data set C was acquired using a linear transducer with a frame rate of about 30 fps, resolution 400 × 400, and 

the frame length in about n = 50 frames.  Data set C was obtained from a normal lung [17]. The data set D was acquired 
using a linear transducer with a frame rate of about 25 fps, resolution 420 × 420, and the frame length in about n = 60 
frames. Data set D was obtained from an abnormal lung [17]. The parameters of processing steps are tabulated in Table 
3.   
 

Table 3 - Processing parameters for the linear transducer 

Data Set THF-WT parameters Adaptive filtering 
C Windows shape: rectangular 

with size 13 × 13 
σg  = 1 and σT = 5 

D Windows shape: rectangular 
with size 13 × 13 

σg  = 1 and σT = 5 

 
The results from data set C and D are illustrated in Fig. 6 and Fig. 7. Using only THF-WT, the pleural lines in 3 

different frames are shown. The remaining background noise and discontinuous lines can be suppressed and corrected 
using THF-WT and adaptive filter. The discontinuity of the pleural lines from data D is clearly shown in Fig. 7.  

 

 
Fig. 6 - The resulting pleural line detection from data set C; the pleural line selected from the region of interest 

(marked by the yellow box) is detected 
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Fig. 7 - The resulting pleural line detection from data set D; the pleural line selected from the region of interest 

(marked by the yellow box) is detected; the discontinuity of the pleural line is detected using THF-WT and  
the adaptive filter 

 
3.3  Discussion 

The alternative image processing framework to support pleural line detection in the LUS is proposed. The 
proposed scheme is based on a top-hat morphological grayscale 2D filter with a texture structure element and followed 
with an adaptive structural 2D low pass filter. This framework is evaluated for open dataset video USG of POCUS.  

The proposed scheme is succeeded in enhancing pleural line detection in healthy subjects and patients. It is 
intended as an early stage of further lung image interpretations in pneumonia patients for typical video LUS acquired 
using a linear and a convex transducer. In future work, the proposed scheme can be used as a part of feature extraction 
techniques to support automatic pleural line detection using machine learning to enhance reliability classification of 
lung abnormality based on LUS image. 
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