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1. Introduction 

Hydrogels are three-dimensional polymeric networks that show hydrophilic properties. These networks can be 

built by physical or chemical bonding that can change the properties of hydrogels. Properties such as flexibility or 

Abstract: Hydrogels are materials that can be used in biomedical and medical applications and have gained 

increasing interest in recent years. In order to obtain a wide variety of properties, hydrogels containing more 

innovative components still need to be produced and investigated. In this study, for this purpose, an innovative 

injectable polyethylene glycol (PEG)/tannic acid (TA)/TiO2 hydrogels were prepared and their properties were 

investigated. TA, used as a crosslinker for PEG, was used in different concentrations (400 mg, 800 mg, and 1.2 g) in 

hydrogel preparation to analyse the effect of tannic acid on the properties of the obtained hydrogels. 

PEG/0.4TA/TiO2, PEG/0.8TA/TiO2 and PEG/1.2TA/TiO2 hydrogels prepared by using FeCl3 to increase the 

crosslink density in its content and by adding TiO2 due to its antimicrobial properties, were characterized by UV-

VIS spectroscopy, FTIR and contact angle measurements. . With the UV-VIS and FTIR spectra, it is seen that 

TA/Fe3+ metal complexes are formed and the three-dimensional hydrogel network is successfully completed with 

the help of these metal complexes formed by the addition of FeCl3. In addition, the contact angle measurements of 

the PEG/0.4TA/TiO2, PEG/0.8TA/TiO2 and PEG/1.2TA/TiO2 hydrogels were found to be 18°, 27° and 27° degrees, 

respectively, and the hydrophilicity of the hydrogels was reached at constant value in the samples added 0.8 g TA. 

The obtained new injectable PEG/TA/TiO2 hydrogel is promising for use in biomedical and medical fields, thanks 

to its contact angle values of less than 90° for biocompatibility and its biocompatible components. 
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mechanical strength also depend on the crosslinkers that are used for the formation of hydrogels. Hydrogels can absorb 

the water in the medium and swell due to their hydrophilicity. Hydrogels are also insoluble in both organic and 

inorganic solvents. With all these properties, hydrogels are used as biomaterials such as wound dressing [1], contact 

lens [2] and membrane [3] or used in biomedical applications such as sensors [4,5].  

Polyethylene glycol (PEG) is widely used in biomedical applications. It is a hydrophilic polymer and soluble in 

water which makes it a good hydrogel candidate. PEG is also a biocompatible and flexible material and has low 

toxicity. In addition, PEG has low interaction with the blood components and has been already approved by Food and 

Drug Administration (FDA) [6]. PEG is a particularly good material for biomedical applications due to all these 

properties. Tannic acid (TA) is a plant polyphenol that is a mixture of gallic acid and glucose molecules. One of the 

important properties of tannic acid is its adhering ability on various substrates such as inorganic or organic substrates, 

hydrophilic or hydrophobic substrates [7]. In addition, TA has phenolic hydroxyl groups that can easily form hydrogen 

bonds. This hydrogen bonding ability of TA helps it to connect hydrophilic polymer chains. Therefore, phenolic 

hydroxyl groups of TA make it a good ligand to some metals such as Fe3+, Cr3+, Co2+, Zn2+, Mn2+ and Cu2+ [8–10] 

While tannins also are capable of inhibiting the growth of some life forms such as fungi, bacteria and viruses, TA has 

antimicrobial and antioxidant activities [11].  

Titanium dioxide is a semiconductor metal oxide that has properties like biocompatibility, ability to absorb UV 

light [12]. Therefore, TiO2 is an excellent antimicrobial agent [13,14] and has a wide area of use such as solar cells 

[15], cosmetics [16], wound healing [17] and food preservation [18]. Hydrogel formation with non-covalent 

interaction such as hydrogen bonding gives the ability of self-healing [19] and shape-memory [20] properties. 

Hydrogels using TA as crosslinker have structure, which have both ionic binding and complexation. While ionic 

binding is forming between polymer and TA via hydrogen bonding, the complexation forms between metal ions and 

TA that was bonded polymer. This metal ion acts as a center and binds TA more than one depending on the metal 

coordination number. With all these bindings a three-dimensional network emerges, and hydrogel formation occurs. 

While TA is an ideal binder for hydrogel formation, controlling parameters of the hydrogel formation such as 

concentration or pH must be adjusted carefully when using TA as a crosslinker. The change at the pH or concentration 

will affect the protons on the hydroxyl groups of TA, so complexation of TA with metal ions will change.  

In this work, innovative PEG/TA/TiO2 hydrogels were designed for biomedical applications. Although PEG/TA 

hydrogels have been studied before, there is no paper that uses TiO2 as an additive to increase the internal cross-

linking, strengthen their mechanical strength and enhance their antibacterial properties of PEG/TA hydrogels. 

Therefore, it was investigated that how different concentration of TA affects the property of prepared hydrogels in 

this paper. While TA was used as a crosslinker in hydrogels, its concentration affects the formation of the 3D network 

and property of hydrogel because of the high amount of hydroxyl groups over TA. 

2. Materials and Methods 

2.1 Materials 

Polyethylene Glycol (PEG8000) and sodium hydroxide (NaOH) were purchased from Sigma Aldrich, iron (iii) 

chloride hexahydrate (FeCl3.6H2O) and tannic acid were purchased from Merck. All chemicals were analytical grade 

and used without further purification. 

2.2 Preparation of PEG/TA/TiO2 Hydrogels 

To synthesize hydrogels, the first 4 g PEG was dissolved in 7.5 mL deionized water. While stirring, TA solution 

(400 mg, 800 mg, and 1.2 g in 2 mL water) was added to PEG solution. The mixture was stirred until a transparent 

solution was obtained. Then 0.5 mL FeCl3 solution (64 mg FeCl3 contained) in water was added to the mixture slowly. 

As a third component, TiO2 nanoparticles synthesized as in our previous study [21] were added to the hydrogel 

composite as 0.2 g for each sample in the hydrogel solution. Finally, gelation was done by adjusting the pH to 6 by 

adding 3M NaOH solution. Samples were named with PEG/0.4TA/TiO2, PEG/0.8TA/TiO2 and PEG/1.2TA/TiO2 

according to the amount of added TA respectively. 

2.3 Measurement and Characterization 

Hydrogels were coated on microscope glasses with the help of syringes and solid UV measurements were 

performed after drying at room temperature for 2 days. The solid-state absorption spectra were recorded at room 

temperature using SHIMADZU UV-2600 UV-vis spectrophotometer, with BaSO4 as reference. The Fourier transform 
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infrared spectroscopy of hydrogel samples was performed with Perkin Elmer Spectrum Two FTIR spectrophotometer. 

Hydrophilicity and wettability and of the samples were measured by measuring the contact angle using a video-based 

contact angle device (Attention optical tensiometer). The drop was recorded with a camera, and the recorded image 

was handled with the drop snake analysis plugin of the software to get the contact angle. Images of the contact angles 

for each sample were obtained 5 seconds after dropping of 4 𝜇L drops. 

3. Results and Discussion 

The formation mechanism of this three component (PEG, TA and TiO2) hydrogels is shown in Scheme 1. TA 

works as linkers to functionalize PEG polymer chains via H-bonds. TA binds polymers to the ternary complex with 

the aid of both TiO2 and Fe3+, and multiplex coordination results in cross-linking of TA-linked PEG polymer chains.  

Both the crosslink density and the combination of the self-forming fragments in the polymers directly contribute 

to the properties of the obtained materials and form the basis of gelation. At low crosslink density, the interaction of 

polymers is not strong enough to form gels, while high crosslink density induces strong interactions between polymers, 

thus resulting in precipitation. In the PEG/TA/TiO2 system, the fragment density can be easily adjusted by varying the 

concentration of polymer and TA. 

 

 
Fig. 1 - Three-Dimensional structure of prepared PEG/TA/TiO2 hydrogels 

 

As can be seen in Fig. 1a, a color change occurred after the addition of three different FeCl3 solutions prepared. 

This color change indicates that the Fe3+ complex is formed. It was observed that the viscosity of the three separate 

hydrogel samples we obtained was high and the viscosity of the hydrogels increased after 24 hours in open containers 

at room temperature. As can be seen in Fig. 1b, while the left-hand sample gelled after being kept with its mouth open, 

it was observed that the right-hand sample with its mouth closed was more fluid. As shown in Fig. 1 c1-2, the hydrogels 

obtained for performing the characterizations were transferred to the microscope glasses with the help of a syringe 

and it was observed that they were injectable. 
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Fig. 1 - Preparation and obtaining stages of hydrogel samples. (a) The color change observed after the addition of 

FeCl3 to the prepared PEG/TA solutions, (b) The decrease in the fluidity of the produced hydrogels after 1 day at room 

temperature, (c1,c2) Transfer of the obtained injectable hydrogels to microscope glasses for characterizations with the 

help of a commercial syringe. 

 

After coating the prepared hydrogel samples, solid-state UV-VIS spectra were measured as shown in Fig. 2. Three 

absorption peaks (212 and 265/365 nm) were observed in the absorption spectrum of the PEG/1.2TA/TiO2 hydrogel. 

They correspond to three absorption peaks (212 and 265/365 nm) due to the B-band (absorption band characteristic 

of aromatic compounds) and K-band (characteristic absorption band in conjugated double bond) corresponding to π-

π* transitions [22].  In the absorption spectrum of PEG/1.2TA/TiO2, the red-shifted phenomenon may be attributed to 

the strong conjugation and inter/intra-molecular interaction between the molecule segments of PEG and TA in 

hydrogels. A broad band ranging from 415–700 nm in the visible light region has been attributed to ligand-to-metal 

charge transfer (LMCT) transitions, d–d transitions, or ligand domain transitions. Also, the double excitations here 

are due to simultaneous excitations of two adjacent magnetically bound Fe3+ cations [23]. Therefore, between 200-

365 nm PEG/1.2TA/TiO2 hydrogel absorbance is highest among all hydrogel samples. Also, PEG/0.4TA/TiO2 and 

PEG/0.8TA/TiO2 hydrogel samples have similar absorbance intensity at the same region. This can be attributed to 

exceeding TA amount over 800 mg, surplus amount of TA does not contribute for formation of hydrogel network. 

As can be seen from Fig. 3, there is a broad peak between 3500-3000 cm-1 in the FTIR spectra of all hydrogel 

samples. These broad peaks can be attributed to physical water, which is swallowed by hydrogels due to the 

hydrophilic nature of samples. All characteristic peaks of tannic acid (C=O bond at 1716 cm-1, aromatic C-C bonds at 

1613 cm-1 and 1448 cm-1) and polyethylene glycol (C-O bond at 1280 and 1242 cm-1) can be seen in FTIR spectra. In 

addition, there are peaks at 527 cm-1 for all hydrogel samples that expressed Fe-O bindings. These peaks correspond 

to the main hydrogel network connection of tannic acid between PEG molecules. Therefore, same difference intensity 

phenomenon can be seen in FTIR spectra as can be seen in UV-VIS spectra. While PEG/0.8TA/TiO2 have lower 

intensity than PEG/0.4TA/TiO2, peak intensities of PEG/1.2TA/TiO2 is higher than PEG/0.8TA/TiO2. This can be due 

to excess amount of TA could not play role when formation of hydrogel network occurs. 
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Fig. 2 - Solid-state UV-Vis spectra of PEG/TA/TiO2 hydrogels 

 

 

Fig. 3 - FTIR spectra of PEG/TA/TiO2 hydrogels. 

 

Contact angle measurements were performed using the sessile drop method for the motion of the three-phase 

contact line between DI water (4 ml) and hydrogel coated surfaces, which were shown in Fig. 4. The contact angles 
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of the hydrogel coated microscope glass surfaces containing tannic acid at 0.4, 0.8 and 1.2 ratios were obtained as 18°, 

27° and 27°, respectively. 

Since the contact angle measurements were below 90°, it was observed that the obtained hydrogel surfaces were 

hydrophilic. Since it is known that hydrophilic surfaces are preferred in biomedical fields, prepared hydrogels are 

suitable for biomedical use in this respect. In addition, it was observed that the contact angle increased with the 

increase of the tannic acid ratio from 0.4 to 0.8, and no significant change was observed after the tannic acid ratio 

increased to 1.2, and the contact angle remained constant. The increase in the contact angle from 18° to 27° is thought 

to be due to the formation of hydrogen bonding of TA with the -OH functional groups of PEG molecules on the 

hydrogel surface. Thus, it was interpreted that the functional groups containing oxygen that would interact with the 

water on the surface decreased. 

 

 

Fig. 4 - Contact angle measurements of PEG/TA/TiO2 hydrogels obtained using software. 

 

It is thought that there are two factors in the contact angle remaining constant at 27° in the second concentration 

increase. As the first factor, it is thought that after the addition of TA, it causes an increase in the wetting angle on the 

surface as a result of the interaction of the functional groups containing oxygen in the PEG molecule with TA, while 
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as the second factor, it also causes an increase in the contact angle as a result of the placement of the oxygen-containing 

functional groups on the TA on the surface, It is thought that the contact angle remains constant due to these two 

factors. 

4. Conclusion 

PEG/TA/TiO2 hydrogels with different TA amounts were synthesized successfully. It has seen from UV-VIS and 

FTIR spectra that PEG/TA/TiO2 hydrogels were successfully synthesized. With the increased amount of TA, the 

hydrophilicity of hydrogels was decreased until the 0.8 g TA added hydrogel. For PEG/0.8TA hydrogel, hydrophilicity 

is reached a fixed value and even adding more TA, the hydrophilicity of hydrogel remains the same for the 

PEG/1.2TA/TiO2 hydrogel sample. According to the characterization results, it is believed that obtained hydrogels 

can be used for biomedical applications. The prepared PEG/TA/TiO2 hydrogels with an in-vitro gelling feature will 

provide a great convenience in terms of injecting them into the skin surface for wound healing since TiO2 is also 

known to have antibacterial properties. 
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