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Abstract: Additive manufacturing (AM) is a process using layer by layer additive technique to fabricate the entire 

3D models into a functional component. One of the most popular AM technology is fused deposition modeling 

(FDM) that utilizes thermoplastic filaments as the materials. AM has the ability to produce complex structure 
easily without additional tool and fixture, therefore, it can save the overall manufacturing process. However, 

without optimum design and parameter settings, FDM has a limitation in printing overhang structures. Therefore, 

this study aims to analyze three types of pass-fail overhang features which are draft angle, overhang length and 

overhang angle varied accordingly to their respective length and angle. These pass-fail features were fabricated 

using the FDM 3D printer with standardized 3D printing parameters. The dimensional accuracy of these features 

was evaluated using an image analyzer. The results showed that the allowable overhang length to be produced is 

starting from the length of 0.5 mm to 1.5 mm. Meanwhile, for the draft and overhang angles, the allowable angle to 

be produced is ≥ 50.00 mm and ≤ 45.00 mm, respectively. From this study, it highlights the limitations of the 

overhang pass-fail features and provide the designer with the design information to help them designing the 

optimal design solution using FDM. 
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1. Introduction 

Additive manufacturing (AM) is a manufacturing technology that uses layer-by-layer processing technique to build 
the entire parts based on its 3D CAD model as input. According to ISO/ASTM 52900:2015, there are seven types of 

AM technologies. They are selective laser sintering (SLS), direct metal laser sintering (DLMS), fused deposition 

modeling (FDM), material jetting, binder jetting, directed energy deposition (DED) and sheet lamination [1]. AM 

provides a lot of potential and benefits, however, the technology still requires high experimental works especially for 

the development of quality end-use parts. There are a few factors that affects the fabrication process of the printed part 

especially when using the fused deposition modeling (FDM) technique. FDM utilizes the material extrusion technique 

of thermoplastic materials to develop the parts. One of the limiting factors that suppress the establishment of AM in the 

industry is insufficient of comprehensive design rules and design guidelines for AM [2]. Therefore, the 

manufacturability study of AM was performed using the benchmarking model. Benchmarking is referred as a level of 
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quality that can be used as a standard when compared with other mechanism. It can also be referred as a standard point 

of references in measuring the quality of the printed parts [3]. Benchmarking is classified into three types which is 

geometric benchmark, mechanical benchmark and process benchmark. Geometric benchmark measures geometric 

features or part that includes tolerance, accuracy, repeatability and surface finish. Whereby, mechanical geometric 

analyzes the mechanical properties such as tensile strength and compressive strength. Meanwhile the process 

benchmark focuses to optimize the parameter settings to determine the optimum setting for process fabrication [4]. 

Nowadays, materials for FDM technique is not only restricted to thermoplastic materials such as acrylonitrile 

butadiene styrene (ABS) and polylactic acid (PLA), but, the composite materials have been introduced to reinforce and 

consolidate the printed part to improve their strength and stiffness [5]. FDM offers big advantages, especially in 
producing the prototypes at a lower manufacturing cost and small batch production. However, one of huge limiting 

factors using this process is the need of structural supports for overhanging geometries. In these geometries, the 

building angle becomes more acute and the support structure need to be diminished [6]. Previously, the 

manufacturability of the overhang structure has been discussed that involves the features such as bridges [1] [7] and 

angles [8]. The main discussion of the overhang is the need of support structures to ensure the geometries are 

successfully fabricated without any defects and disability. However, the support structures take a longer time to build, 

thus, adding the material costs. Worsen, once the support structures removed from the parts, it may affect the 

dimensional accuracy and surface finish of the printed part, hence, the post-processing process needs to be executed for 

bringing the components to the desired quality. One of the known post-processing techniques is by using the chemical 

treatment [9] that can improve 90% of the surface finishing of the parts. Therefore, in this study, overhang structures 

with three types of pass-fail features were developed, fabricated and analyzed in order to measure the allowable 

measurement length and angle. The main aim is to produce a successful overhang without the support structures. The 
part’s investigated include overhang length, overhang angle and draft angle. The detail descriptions of the respective 

overhangs are discussed further in the methodology sections. 

 

2. Literature Review 

According to Adam and Zimmer [1], overhang is an aggregated structure that needs to be designed with element 
orientations that does not require the support materials. A study by Johnson et al. [10], evaluated the benchmarking 

using various types of manufacturing features in one built platform. The results showed the overhang angles can only 

be fabricated with the measurements of 45 degrees and 50 degrees. Besides that, other basic manufacturing features 

were also investigated such as cube, ring, cylinder and slot to study the dimensional accuracy and surface roughness of 

the parts [11]. The process parameter optimization towards different manufacturing features was also studied. For 

example, Miguel et al. [7] investigated the process parameters that affect the fabrication of overhang structures using 

FDM. Overhang angles and bridges were fabricated and the results showed that the layer thickness has a great influence 

to produce the successful overhang printed part. The investigation of process parameters in FDM is not only focusing 

on the overhang structures only, but, other manufacturing features were also reported. Variable parameters to validate 
the pre-process design have been conducted to achieve better manufacturability in AM [12]. Besides FDM, other AM 

technology such as selective laser melting (SLM) or selective laser sintering (SLS) also undergone similar design 

constraints. In SLM, variety of elemental metals and alloys are used because they can produce excellent surface finish 

compared to FDM. This is due to the laser-based processing technique if compared to the nozzle-based from FDM. 

Moreover, the laser used in SLM has also proven to be industrial safe [13-15]. 

Literally, few attempts have been made to cater the overhanging problems in various types of AM processes [6] 

[16-17]. For example, Leary et al. [6] developed a strategy to minimize the use of support material using the geometric 

limits comparison that integrated with the feasible building orientation. Besides that, a tool to improve the surface 

finishing of overhang parts was also developed to eliminate the staircase effects that also support marks [16]. Topology 

optimization is one of the design methods to improve an overhang structure. A study by Leary et al. [6] modified the 

theoretical optimal topology to ensure the manufacturability of overhang structures without requirements of additional 
support materials. A case study presented the modified topology optimization can successfully enable the support-free 

AM of FDM structures. The other simplest method to improve the overhang quality is by using the optimization of 

process parameters. Various printing parameter settings such as layer thickness, road width and speed deposition were 

studied [13]. The optimization of process parameter was executed to get the optimal results of the printed part qualities 

such as dimensional accuracy, mechanical strength and surface finish [18-19]. 

In this study, the manufacturability analysis of the overhang structure was analyzed based on three types of 

overhang design which are overhang length, overhang angle and draft angle. The design development of the overhang 

and parameter selections were determined. 

 

3. Methodology 

Several overhang structures, as shown in Table 1, were developed. Each of the structures consists of various 
dimensional measurements. Table 1 provides a visual presentation of the CAD model envelope that was designed using 
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Solid works. Three different types of pass-fail features of overhang were prepared for the experiments. They are 

overhang length, overhang angle and draft angle. 

 
 

Table 1 - 3D CAD of overhang features 
 

Geometry 

feature 

Overhangs 

(Length) 

Overhang angle Draft angle 

 

3D CAD 

 
 

 

 

 

 

 

 

 

 

Table 2 - Details descriptions of overhang structures 
 

Geometry feature  Overhangs  

 Length Angle Draft angle 

Design 
 

 

 

 

 

Group Aggregated structures Aggregated structures Element transition 

Pass-fail features Overhang length Overhang angle Draft angle 

Guide Length, l Angle, ° Draft angle, ° 

 

 
In Table 2, each of the overhang types has been categorized according to their respective pass-fail features. 

Generally, pass-fail feature was defined as a feature that has the possibilities to be successfully fabricated or not 

successfully fabricated using AM. These terms provide a grading to determine the manufacturability and quality of the 

printed part. Overhang is categorized as an aggregated structure which can also be described as a bridge. The first 

testify overhang is the overhang length. In this experiment, overhang length referred at length (l), which the 
measurements were varied from 0.5 mm to 4.0 mm. Meanwhile, the overhang angle with the guide, angle (°), has a 

measurement from 10 to 70 degrees as well as the draft angle. Overhang angle and draft angle shared the same guide 

which is “angle”, however the different between these two features is the position of the angle in the features. 

Compared to injection molding, the draft angle is referred as a slant that is applied to each side of most features of an 

injection molded part, where the angle is positioned to run towards the directions of a mold’s pull and parting line that 

helps to release the part from the mold. Therefore, it was called as an injector draft angle. Meanwhile, for draft angle in 

AM, the slant is measured from the horizontal surfaces from the bottom side to the upwards position and mostly 

recognized as the self-support draft angle. Figure 1 shows the comparison of the draft angle between injection molding 

and AM. Finally, the overhang angles measured based from protruding features to the curve upwards (see Table 1). 
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Fig 1- (a) draft angle in injection mold; (b) draft angle in AM 

 
 

3.1 Experimental Setup 
 

FDM 3D printer using material extrusion technique (see Figure 2) was used to carry out the experiments. The 

build area for this printer is 250 mm width x 250 mm length x 200 mm height. All of the parts to be printed must be 

less than this calculated area to produce successful printed parts. The material used in this experiment is thermoplastic 

Polylactic Acid (PLA) with the filament diameter of 1.75 mm and extrusion temperature is between 195 and 215 

degrees. PLA is used in these experiments because compared to ABS or other commercialized 3D printing material, 

PLA has a low temperature, which gives the better adhesion for the overhang layers. In addition, when using PLA, the 

fan needs to be always functioning to improve the solidification process. If using ABS for example, it was not 

recommended to use fan because it increased the warping percentage of the printed parts. Therefore, PLA is a suitable 

material to be used in these experiments. To start printing, the 3D objects need to be sliced using Slicer to convert the 

layers into G-code format. The actual setting of print parameters is shown in Table 3. 

 

 

Fig 2 - FDM 3D printer using material extrusion technique 

 
Table 3 presents the selection of parameter settings used in these experiments. The process parameter optimization 

has firstly conducted using Taguchi analysis. Three levels have been used and three factors were considered which is 

layer thickness, printing speed and temperature. Meanwhile, the other parameter settings were selected based on the 

defaults given in the software. The overall discussion on the parameter optimization process do not comprehensively 

discussed in this paper. Therefore, the optimal results were selected based on the analysis conducted via Minitab 
software. 

Table 3 - Print parameter settings 
 

Parameter settings Parameter value 

Layer thickness (mm) 0.15 

Fill density (%) 20 

Temperature (Celsius) 195 

Fan (mm/s) 

Print speed (mm/s) 

225 (maximize) 
40 
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In Table 3, the selected parameter setting was used to fabricate the parts. The most important parameter was the 

layer thickness which was given a smaller value for the thickness (using 0.15 mm) with 0.4 nozzle diameter. This 

selected value is to give an optimal result for the surface finishing. The selected fill density is 20/100 because the fill 

density would not affect the end results of the overhang fabrications. However, infill density will impact the mechanical 

strength of the parts. If the parts require higher strength as the end results, maximum value of infill density must be 

assigned. In this experiment, the temperature used is 195 degrees because the optimization of process parameter has 

been conducted as the preliminary results. In addition, the fan must always be turned on with the maximize speed 

because it speeds up the solidification process of the printed materials. Therefore, the lower the cooling fan speed 

means the higher the possibility of the filaments to be in the liquid state. Each of the overhang structure was fabricated 

using this standardize parameter to all of the pass-fail features. After that, each of the respective overhangs was 
measured using the image analyzer, where the schematic diagram showing the process of capturing the images is  

shown in Figure 3. This study involves the edges, curves and angles, therefore, image analyzer has been chosen as the 

most suitable method that can capture the data of those features. This device is able to be zooming up to 0.6 time of 

magnificent details showing all the layers closely from the parts. Generally, image analyzer using the same concept 

with the conventional microscope, however, the image can be captured and measured because it was displayed from the 

LCD screen. 

 
 

Fig 3 - Image analyzer on the right side 

 

 

4.0 Results and Analysis 
 

In order to compare the obtained results, image analysis using image analyzer was carried out. The results were 

based on the deviation value between the actual measurements (printed part) and the CAD data. 

 

4.1 Overhang length 

AM printing overhang structures are described as any parts of the print that extending outwards beyond the 

previous layer, without any direct support structure such as a raft. Rafts and support were very difficult to remove and 

would contribute to the waste in materials and it is not recommended to be generated unless the functions is necessary. 

In this experiment, the overhangs tested have twelve different overhang length values starting from 0.5 mm to 4.0 mm. 

However, the results showed that maximum overhang length that was able to be produced was ≤ 2.00 mm only. Higher 
than this value, the overhang length started to produce unwanted sagging that slack off under the designed parts. A 

schematic diagram shown in Figure 4 was designed to illustrate the problems when overhang length was produced 

more than 2.00 mm. 
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Fig 4 - (a) Overhang successful printing with support; (b) overhang without support 

 

Figure 4 presents two scenarios for overhang fabrication. Figure 4(a) describes the successful fabrication using the 
generation of support materials, meanwhile Figure 4(b) describes the failure fabrication of overhangs that produced the 

sagging when support material was degenerating. Sagging of filament is the condition when the filament is drooping 

from its origin. After it drips, it often leaves agglutinated materials under the original parts. However, the overhang can 

be successfully fabricated without using the support materials, with some length limitations. In this study, twelve 

overhang lengths were fabricated and the overall measurements are tabulated in Table 4. The inspection describes 

whether the overhang is successfully fabricated or not. The results of the inspection were determined by observing the 

condition of agglutinated filament under the microscope. The higher observation of agglutinated material shows the 

unsuccessful fabrication of the overhangs part. In addition, Figure 5 shows the successful fabricated overhangs and 

unsuccessful overhang condition after printing. Table 4 describes the measurements between the CAD data and actual 

data measured in mm, however, only the measurements from 0.5 mm to 1.5 mm were collected. For the rest of the 

measurements, proper data could not be collected because there is the disturbance of sagging filament. 
 

 

 

Fig 5 - Examples of successful and unsuccessful overhang length 

 

 
Table 4 - Overhang length, l measurements 

 
CAD data (mm) Actual data (mm) Inspection 

0.5 0.41 Successful 

0.6 0.52 Successful 

0.7 0.53 Successful 

0.8 0.73 Successful 

0.9 0.81 Successful 

1.0 0.89 Successful 

1.5 1.34 Successful 

2.0 - Unsuccessful 

2.5 - Unsuccessful 

3.0 - Unsuccessful 

3.5 - Unsuccessful 

4.0 - Unsuccessful 
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4.2 Overhang angle and draft angle 

In this study, there are two types of angles to be investigated; overhang angle and draft angle. Overhang angle is 
measured from the vertical axis, meanwhile the draft angle is measured from the horizontal axis. Both of these features 

were fabricated using the angle measurements from 10 degrees to 70 degrees. As a result, thirteen samples of overhang 

angles and draft angles were fabricated, respectively. Figure 6 and 7 present the conditions of the pass-fail features of 

the overhang angles and draft angles, respectively. 

 

 

Fig 6 - (a) Successful overhang angle with 35 degrees; (b) 45 degrees and (c) fail print with overhang angle 70 

degrees 

 

Figure 6 presents the results from the image analyzer for the overhang angle that consists of an angle of 35, 45 and 

70 degrees. From the figure, it can be observed that the successful overhang angle which is 35 and 45 degrees produces 

smooth surfaces at the top of the edges. Meanwhile, for the unsuccessful overhang angle, the material lump can be 

observed on the top of the edges. Therefore, the measurements could not be taken due to the disturbances. 

Table 5 and 6 tabulated the overall measurements from the experiments. According to Table 5, overhang angles ≤ 

45 degrees were successfully produced. This is because, any layer that is up to 45 degrees has been supported by at 

least 50% of the layer beneath the structure. In the other words, each new layer to be printed has enough support to 

remain intact and produce successful overhang angle without any loss of quality. However, for the angles exceeding 45 
degrees, the layer is approaching the horizontal and becomes difficult to print. These types of overhang angles are 

prone to curling, sagging and also de-lamination. Exceeding the 45-degree overhang angles means that the new layer 

does not have a strong support to bond with which led to a poor quality of printed part with a drooping filament strands 

and unwanted sagging. The same situation may also be applied to fabricate the draft angles. In contrast with the 

overhang angles, the draft angle must be designed with more than 70 degrees in order to be successful because it was 

measured from the horizontal axis instead of the vertical axis. 

 

 
Table 5 - Overall measurements and inspection for overhang angles 

 

CAD data (mm) Actual data (mm) Inspection 

10 6.46 Successful 

15 12.31 Successful 

20 16.48 Successful 
25 26.01 Successful 

30 30.87 Successful 

35 36.84 Successful 

40 37.16 Successful 

45 37.64 Successful 

50 - Unsuccessful 
55 - Unsuccessful 

60 - Unsuccessful 

65 - Unsuccessful 
  70  -  Unsuccessful  
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Draft angles usually known as a self-supporting angle may be varied from the materials, layer thickness and also 

the other factors in the Slicer or any other 3D printing software. By default, the software itself does not generate the 

supports where there are self-supporting angles. Therefore, it truly depends on the user to take control over this issue by 

avoiding to design any parts that contain less than 70 degrees of self-supporting angles (draft angles). However, if those 

overhangs are deemed necessary to be used, the support material needs to be generated and proper cautions to dissolve 

the supports without destroying the actual design of the printed parts. Figure 7 and Table 6 respectively presents the 

pass-fail features of overhang-draft angles types conditions after the printing process. Figure 7 (a) presented the total 

failure of the draft angle with 10 degrees because the filaments are melting down and destroying the actual images of 

the angles. Therefore, the allowable data to be measured is from 50 degrees to 70 degrees. 

 
 

 

Fig 7 - (a) Fail draft angle at 10 degrees; (b) successful print at 50 degrees and (c) 70 degrees 

 

 

 
Table 6 - Overall measurements and inspection for draft angles 

 

CAD data (mm) Actual data (mm) Inspection 

10 - Unsuccessful 

15 - Unsuccessful 

20 - Unsuccessful 

25 - Unsuccessful 

30 - Unsuccessful 

35 - Unsuccessful 

40 - Unsuccessful 

45 - Unsuccessful 

50 51.77 Successful 

55 54.69 Successful 

60 61.05 Successful 

65 65.84 Successful 

70 70.03 Successful 

 

 
Besides that, the overhang can also be successful if printing by using the proper selection of process parameters. 

Four types of parameter settings having the significant factors in producing the overhangs. They are printing speed 

(mm/s), nozzle temperature (degrees), and fan speed (mm/s). The first factor that is significantly affects the process of 

overhang is the solidification process which mainly influences from the cooling factors such as fan speed. It is good to 

have the maximum speed of fan which can provide the higher cooling effects. For example, in the Slicer, the maximum 

fan speed selected is 225 mm/s to speed up the solidification process and prevent the filaments from kept falling down. 

Besides that, the low temperature was recommended, especially when using PLA to prevent over extrusion and to 

maintain the excellent layer adhesion. This is also the trick to minimize the stringing because the viscosity of the 

filaments if consistent and would not leave stringing. Overall, rapid cooling is very important to develop the successful 

overhangs, correspondingly with the printing speed. Reduce the printing speed can help the cooling fan to spend more 

time directing the air flow over the particular layers of the objects. By reducing the printing speed, the build printing 
time is then increased. However, this extra time allows the printing to have a better layer adhesion resulting a stronger 

and neater overhang. 
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5.0 Conclusions and future recommendations 

In this study, three types of overhang pass-fail features were investigated which are overhang lengths, overhang 
angles and draft angles. The experiments showed that the overhangs can be successfully fabricated, however, there is 

always a length limitation especially when using the material extrusion technique such as FDM. The overhangs were 

fabricated using PLA materials consisting of thirteen parts with different measurements. The results showed that the 

overhang length can be produced successfully when the length is below than 1.5 mm. Meanwhile for overhang angle 

and draft angles, the allowable measurements are ≤ 45 degrees and ≥ 50 degrees, respectively. Other than that, factor 

considerations to produce overhangs are by reducing the printing speed, lowering the nozzle temperature and 

maximizing the fan speed to speed up the solidification process. In conclusion, overhang still can be considered for 

fabrication using FDM, however, the user need to select the proper measurements and parameter settings to eliminate 

the possibility of producing the failure printed parts. 
In addition, future research will be conducted to testify on the newly introduced material such as carbon fiber 

reinforced polymer (CFRP) such as CFRP-ABS and CFRP-PLA. This two carbon fiber material are a composite type 

which having a higher melting temperature compared the standard polymer. However, the hypothesis stated that the 

CFRP will produce a better quality of overhang due to the blending of the carbon fiber powder in the filament which 

will speed up the solidifications of the melting filaments and produces a better overhang. Further findings and 

experiments will be conducted in other discussions. 
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