

JOURNAL OF SOFT COMPUTING AND DATA MINING VOL.4 NO. 2 (2023) 59-66

© Universiti Tun Hussein Onn Malaysia Publisher’s Office

JSCDM

http://penerbit.uthm.edu.my/ojs/index.php/jscdm

e-ISSN : 2716-621X

Journal of Soft

Computing and

Data Mining

*Corresponding author: nurezayana@uthm.edu.my
2023 UTHM Publisher. All rights reserved.

penerbit.uthm.edu.my/ojs/index.php/jscdm

59

Test Case Prioritization Using Swarm Intelligence Algorithm

to Improve Fault Detection and Time for Web Application

Kohani K. Mohan1, Nurezayana Zainal1*, Mohd Zanes Sahid1

1Faculty of Computer Science and Information Technology,

 Universiti Tun Hussein Onn Malaysia, Parit Raja, 86400 Batu Pahat Johor, MALAYISA

*Corresponding Author

DOI: https://doi.org/10.30880/jscdm.2023.04.02.006

Received 07 May 2023; Accepted 13 July 2023; Available online 04 October 2023

1. Introduction

Regression testing is portrayed as the technique engaged with retesting the adjusted code of the system in test and

ensuring that no new slip-ups have been brought into after the modification of recent codes. The techniques in

regression testing includes regression test selection, test suite minimization and test case prioritization. Test Case

Prioritization (TCP) is a technique that assigns a priority to each test case. Priority is assigned based on a set of criteria,

and the highest-priority test cases are scheduled first. The criterion might be that the test case with the fastest fault

coverage receives the highest priority. This method has the advantage of neither discarding or permanently removing

test cases from the test suite [1]. TCP is aimed to schedule the execution order of test cases to improve test

effectiveness. The most common problem that TCP is used to solve is to minimize costs and the time taken during

testing process.

Recently, several researches performed a study on test case prioritization by implementing GA, FA, Bat Algorithm

(BA), etc. The study outcome showed various results based on the domains used as well as the algorithms. The FA

showed a good response however, it slightly outperformed in terms of execution time [2]. Besides that, the research that

was carried out to test the effectiveness between GA and ACO showed a positive outcome that ACO was a better

Abstract: Prioritizing test cases based on several parameters where important ones are executed first is known as

test case prioritization (TCP). Code coverage, functionality, and features are all possible factors of TCP for

detecting bugs in software as early as possible. This research was carried out to test and compare the effectiveness

Swarm Intelligence algorithms, where Artificial Bee Colony (ABC) and Ant Colony Optimization (ACO)

algorithms were implemented to find the fault detected and execution time as these are the curial aspects in

software testing to ensure good quality products are produced within the timeline. As web applications are

commonly used by a board population, this research was carried out on an Online Shopping application

represented as Case Study One and Education Administrative application known as Case Study Two. In recent

years, TCP has been implemented widely, but none has implemented on web application which was conducted to

fill the gaps and produce a new contribution in this area. The outcome was compared using Average Percentage

Fault Detected (APFD) and execution time. For Case Study One, the APFD value was 0.80 and 0.71 while the

execution time was 8.64 seconds and 0.69 seconds respectively for ABC and ACO. For Case Study Two, the

APFD values were 0.81 and 0.64 while the execution time was 8.83 seconds and 1.22 seconds for ABC and ACO.

It was seen that both algorithms performed well in their respective ways. ABC had shown to give a higher value

for APFD while ACO had converged faster for execution time.

Keywords: Test case prioritization, artificial bee colony, Ant Colony Optimization (ACO), APFD, execution time

http://penerbit.uthm.edu.my/ojs/index.php/jscdm

Mohan et al., Journal of Soft Computing and Data Mining Vol. 4 No. 2 (2023) p. 59-66

60

algorithm when implemented in time-constrained environment [3]. Hence, this research was carried out in order to test

and compare the effectiveness of two different algorithms under Swarm Intelligence, where ABC and ACO algorithms

were implemented in the study. The test was executed to find the fault detected and execution time when both

algorithms were implemented as these are the curial aspects in software testing to ensure good quality products are

produced within the timeline.

Besides that, this research was also carried out on web application test cases. As web applications or dynamic

websites are commonly used by the broad population around the world for information, e-commerce, and e-learning,

this research was conducted to test the effectiveness of both algorithms in prioritizing the web application test cases [4].

This would help to improve the fault detected and execution time as these are the most crucial aspects in software

testing to maintain good quality assurance within a proposed period of time. In recent years, TCP has been

implemented in many studies but none has implemented on web application which was conducted in this research to fill

the gaps and produce a new contribution in this area.

2. Literature Review

2.1 Software Testing

Software testing technologies have evolved as a prominent software engineering technique in recent years,

assisting in cost management, quality improvement, time and risk reduction [5]. Software testers have had to come up

with new techniques to estimate their projects as testing practices have evolved [6]. Software testing is a type of quality

assurance activity that involves assessing a system under testing (SUT) by watching it run in order to find flaws. When

the SUT's exterior performance differs from what is anticipated of it according to its specifications or any other

description of the acceptable result, a failure is discovered [7]. The test case is an important part of the testing process.

In essence, a test case specifies the conditions under which the SUT must be run in order to detect a failure. Software

testing is a critical component in determining the product's quality and utility, as well as ensuring that the final outcome

is in the customers' best interests [8].

2.2 Test Case Prioritization

The method of selecting test cases is to arrange them in a logical sequence based on several factors that improves

the test cases' efficacy in reaching a performance target. Test case prioritization (TCP) is the process of scheduling test

cases in this manner [9]. Running all test cases in an existing test suite can take an excessive amount of time.

Regression testing for the test case is performed using test case prioritization strategies in order to optimize some of the

objective functions [10]. TCP ranks test cases based on a set of criteria, with the highest-ranked test cases being

executed first [11]. TCP is classified into several approaches which are history-based, code coverage based, search

based and requirements-based [12].

The evaluation metrics used in TCP is known as Average Percentage Fault Detected (APFD). This measurement

estimates the weighted average of the level of faults detected when implemented on the algorithms over the existence

of a test suite. APFD values range from 0 to 100 where the larger numbers imply quicker is the better fault detection

rate. The metrics calculation will be explained further in Section 3. Besides that, the another important measures taken

into count for TCP is execution time. This parameter plays a vital role in order to assure the project timeline is not

exceeded. Execution time is measured in order to track on how long does it take to prioritize test cases based on the

faults and severity of the test case. When algorithms are implemented on TCP, the best cost which is represented by the

distance is produced to determine the shortest path in prioritizing the test cases.

Table 1 - Comparison of algorithms used in TCP

Author Algorithm Purpose Results

Test Case Prioritization

Using Firefly Algorithm

for Software Testing

Firefly

Algorithm

To use the Firefly Algorithm with a
fitness function generated using a
similarity distance model to
prioritize test cases optimally.

Firefly Algorithm performed
better in terms of time execution
and APFD.

Improved Meta-Heuristic
Technique for Test Case
Prioritization

Ant Colony

Optimization

To use an improved meta-heuristic
approach ACO method in a time
constrained setting to find the best
optimal path by prioritizing test
cases.

It is easier to find the highest
number of faults while executing
the smallest amount of test
instances by using the proposed
algorithm.

Test case prioritization
based on historical
failure patterns using
ABC and GA

-Artificial

Bee Colony
-Genetic
Algorithm

To use Artificial Bee Colony
Optimization and Genetic Algorithm
to enhance fault detection by using
historical execution of regression
cycles.

The fault detection capabilities
have significantly improved
using ABC.

Mohan et al., Journal of Soft Computing and Data Mining Vol. 4 No. 2 (2023) p. 59-66

 61

Flower Pollination
Algorithm for Test Case
Prioritization in
Regression Testing

Flower

Pollination

Algorithm

(FPA)

FPA is used to prioritize test cases

from the original test suite to

shorten the time it takes to run

regression tests

FPA for TCP converged early
with just one repetition required

Test Case Prioritization
Using Bat Algorithm

Bat

Algorithm

To implement a relatively new

nature-inspired optimization method

called the Bat algorithm

BA had shown a significant rise
in the value of the evaluation
metric of APFD.

Table 1 shows the comparison of previous works related to TCP that was implemented using various algorithms.

3. Methodology

The flow of the research is illustrated in Figure 1. Four consecutive phases are involved, which are:

i. Problem Definition

ii. Data Definition

iii. Implementation of ABC and ACO algorithms

iv. Validation and Evaluation of Results

Fig. 1 - Research process flow

3.1 Problem Definition

The beginning stage of this research, a problem was identified in order to come up with the proposed research idea.

In this case, the problem obtained was to test and compare the effectiveness of two different Swarm Intelligence

algorithms to find the fault detected and execution time when both algorithms are implemented on test case

prioritization as these two factors are very important in software testing to assure a successful product can be delivered

on time.

3.2 Data Definition

In the phase of data definition, 2 case studies were explored further for this research which comprises of datasets

from 2 separate web applications. These datasets are a set of test cases, that were obtained from a software testing

company. As the data are confidential, the respective contents will not be disclosed in this report. A summary table

with test cases, faults and time for both case studies which were the main data required for this study will be illustrated.

The first case study was conducted using an Online Shopping application. The test cases were generated by the

Software Testing Company in Kuala Lumpur. This e-Commerce application consists of 6 functions which are Register,

Login, Add To Cart, Check Out, Payment and Delivery. Each function was tested out and a set of test cases were

created accordingly. Based on the data provided, there were in total of 10 test cases with 11 faults. Figure 2 (a) shows

the summary of test cases and its respective faults along with the time for case study one.

The second case study was based on an Education Administrative application which consists of 8 functions. The

application functions were Create Partnership Plans, Setting up a Partnership, several Admission Processes, Online

Mohan et al., Journal of Soft Computing and Data Mining Vol. 4 No. 2 (2023) p. 59-66

62

Registration, Partnership Program Enrolment and Graduation Process. Each function was tested out and a set of test

cases were provided accordingly. This application has a total of 8 test cases with 8 faults. Figure 2 (b) displays the

dataset used in case study two.

(a) (b)

Fig. 2 - (a) Case study one; (b) case study two

3.3 Implementation of ABC on Test Case Prioritization

The process of ABC algorithm as shown in Figure 3 (a) starts by initializing the iteration and number of bees

represented by the number of test cases as shown in Figure 3 (c). As soon as the execution begins, the time

measurement is calculated. The test cases are picked based on the distance from the nest which is also known as tour, as

shown in the syntax of the algorithm in Figure 3 (b) and the source's profitability which refers to the goodness of the

test case for solving a problem. In this case, the distance from the nest is calculated by the number of faults detected in

each test case. Then, employed bees are linked to the test cases where they work, and these bees conduct a waggle

dance to transmit the information with the other bees. From the information given by the employed bees, onlooker bees

wait in the nest for the emergence of the most profitable test case while scouts look for new nearest test cases. The

process repeats until the best test cases are obtained based on the tour and cost value captured from the process. Hence,

the test cases will be prioritized with the most fault detection and the execution time will be captured when the

maximum iteration is reached.
The same flow was implemented on both, case study one and case study two for ABC algorithm and the results

were gathered. Figure 3 (b) shows a snippet code of ABC algorithm used in both case studies while Figure 3 (c) shows

the initialization values of the constant parameters set.

 (a) (b) (c)

Fig. 3 - (a) ABC algorithm; (b) ABC snippet code; (c) ABC initialization values

Mohan et al., Journal of Soft Computing and Data Mining Vol. 4 No. 2 (2023) p. 59-66

 63

3.4 Implementation of ACO on Test Case Prioritization

As shown in Figure 4 (a), the ACO algorithm process begins with initialization of iterations and artificial ants

based on the variables in Figure 4 (c). When the algorithm is executed, the time evaluation will immediately start.

Then, the ants will determine which test case to visit next based on the fault detected. The feasible path is selected

based on the highest pheromone. The pheromone level is then updated and the process continues by determining if the

termination conditions are fulfilled. If the conditions are achieved, the process ends, else it repeats until all test cases

have been analyzed. By doing so, the shortest path travelled by the ants will prioritize test cases based on the maximum

fault detection in the early stage. All of these processes have been translated into the syntax in the algorithm in Figure 4

(b). Due to ants' natural tendency to choose the shortest path to food sources and return to their nests sooner, the route

with the highest proportion of pheromones indicates the shortest path. The execution time will be terminated and

evaluated once all iterations have been completed. The shortest path and execution time will then be shown.

The same procedure was used in case study one and case study two for this ACO algorithm. Figure 4 (b) shows a

snippet of the ACO algorithm MATLAB code applied for both case studies while Figure 4 (c) shows the initialization

values of the constant parameters set.

 (a) (b) (c)

Fig. 4 - (a) ACO Algorithm; (b) ACO snippet code; (c) ACO initialization values

3.5 Evaluation Parameters

3.5.1 Average Percentage of Fault Detected (APFD)

The weighted average percentage of faults detected (APFD) was introduced by Rotherm el as a measurement to

analyze prioritization performance [13]. The weighted mean of the faults covered by the test cases is computed using

the Average Percentage of Fault Detected (APFD) value in line with the test case position in the test suite. The

mathematical expression is shown in (1):

 (1)

Where TFi is position of first test case that exposed the faults. Next, n represents total number of test cases and m

represents a set of faults detected. The APFD with higher values implies higher fault detection rates [14]. The results

with higher APFD value will be the better performing algorithm.

3.5.2 Execution Time

The second evaluation parameter is based on the execution of time when the algorithms were applied. The time is

measured using seconds (s) unit. The execution with lowest time is considered the better algorithm. The time

calculation equation is shown in (2):

 Execution time = Start time - End time (2)

4. Results and Discussion

Mohan et al., Journal of Soft Computing and Data Mining Vol. 4 No. 2 (2023) p. 59-66

64

4.1 Fault Detection Rate

Average Percentage of Fault Detected (APFD) value is used to calculate the weighted mean of faults covered by

test cases in accordance with the test case position of the test suite. If the fault detection is rate is faster, the APFD

value is higher. The higher APFD value represents the better performing algorithm. Based on the study conducted using

ABC and ACO algorithms on two cases studies, the APFD values were calculated based on the prioritized test cases.

The gathered results were also compared with the original set of non-prioritized test cases. Table 2 represents the

values of the prioritized and non-prioritized test cases.

Table 2 - Comparison of APFD

Algorithm Case Study One Case Study Two

ABC 0.80 0.81

ACO 0.71 0.64

Original 0.61 0.70

Based on the Table 2, the comparison of APFD values are illustrated through a graph in Figure 5. It is shown that

the APFD values for ABC algorithm is the highest for both Case Study One and Two, which are 0.80 and 0.81

respectively. On the other hand, for ACO, Case Study One is 0.71 and Case Study Two is 0.64 while the original non-

prioritized ordering is 0.61 for Case Study One and 0.7 for Case Study Two.

Fig. 5 - Comparison graph for APFD

4.2 Execution Time

In the process of SDLC, time plays a very important role in ensuring the end product can be delivered within the

project timeline. Hence, in Software Testing execution time should always be taken into consideration in order to avoid

delays.

Based on the results collected from the implementation, a comparison between ABC, ACO and original set of test

cases is illustrated in Table 3 for both the case studies in terms of execution time.

Table 3 - Comparison of execution time

Algorithm Case Study One
(s)

Case Study Two
(s)

ABC 8.64 8.83

ACO 0.69 1.22

Original 19.8 23.14

From the data collected in the above table, a comparison graph as shown in Figure 6 was created to display the

difference of the execution time. For Case Study One, it can be seen that the non-prioritized test cases have the highest

execution time of 19.8 seconds. In terms of the prioritized test cases, ABC took a longer time which is 8.64 seconds and

ACO only 0.69 seconds. Case Study Two also showed the same outcome whereby the non-prioritized test cases took

the longest time which is 23.14 seconds while the prioritized, ABC and ACO took 8.83 seconds and 1.22 seconds

respectively.

Mohan et al., Journal of Soft Computing and Data Mining Vol. 4 No. 2 (2023) p. 59-66

 65

Fig. 6 - Comparison graph for execution time

Based on the overall data gathered from this execution on Case Study One and Case Study Two, it can be seen that

both ACO and ABC has its own advantage. In terms of APFD, ABC is shown to be the algorithm that covered the

highest fault detection rate, while for execution time, ACO took the shortest time to prioritize the test cases.

5. Conclusion

This research was conducted with the idea of implementing Swarm Intelligence algorithms on Test Case

Prioritization to Improve Fault Coverage and Execution Time for Web Applications. The algorithms used were ABC

and ACO. The algorithms were implemented on two different datasets namely Case Study One and Case Study Two.

Case Study One consist of a set of 10 test cases with 11 faults from an Online Shopping web application while Case

Study Two consists of 8 test cases and faults from an Education Administrative Web Application. Both the datasets

were obtained from a Software Testing company. At the end of the execution, the results were gathered and discussed

in. The results were compared between non-prioritized and prioritized test cases. It can be concluded that both ABC

and ACO performed well in its respective ways. When compared in terms of APFD, ABC had shown to give a higher

value of fault detection for both the datasets while in terms of execution time, ACO had converged faster during the

execution. Hence, both ABC and ACO algorithms are equally good when implemented on test case prioritization. As a

conclusion, the implementation of this research was a success as it achieves the objectives that were analysed. This

research phase started with problem definition, data definition which was conducted by gathering web application test

cases that were obtained from a software testing company, followed by implementation of ABC and ACO algorithms

using MATLAB2022 tool and finally validation and evaluation of results based on APFD and execution time.

Acknowledgement

The authors would like to thank the Faculty of Computer Science and Information Technology, Universiti Tun

Hussein Onn Malaysia, for supporting this project.

References

[1] Raamesh, L. (2016). Test case prioritization. Int. J. Appl. Eng. Res., vol. 10, no. 13, 32917-32922.

[2] Khatibsyarbini, M., Isa, M. A., Jawawi, D. N., Hamed, H. N. A., & Suffian, M. D. M. (2019). Test case

prioritization using firefly algorithm for software testing. IEEE access, 7, 132360-132373.

[3] Panwar, D., Tomar, P., Harsh, H., & Siddique, M. H. (2018). Improved meta-heuristic technique for test case

prioritization. In Soft Computing: Theories and Applications: Proceedings of SoCTA 2016, Volume 1 (pp. 647-

664). Springer Singapore.

[4] Khanna, M., Chauhan, N., Sharma, D. K., & Toofani, A. (2017). Test case prioritisation during web application

testing. International Journal of Computer Applications in Technology, 56(3), 230-243.

[5] Alaqail, H., & Ahmed, S. (2018). Overview of software testing standard ISO/IEC/IEEE 29119. International

Journal of Computer Science and Network Security (IJCSNS), 18(2), 112-116.

[6] Tebes, G., Peppino, D., Becker, P., Matturro, G., Solari, M., & Olsina, L. (2020). Analyzing and documenting the

systematic review results of software testing ontologies. Information and Software Technology, 123, 106298.

[7] Durelli, V. H., Durelli, R. S., Borges, S. S., Endo, A. T., Eler, M. M., Dias, D. R., & Guimarães, M. P. (2019).

Machine learning applied to software testing: A systematic mapping study. IEEE Transactions on Reliability,

68(3), 1189-1212.

Mohan et al., Journal of Soft Computing and Data Mining Vol. 4 No. 2 (2023) p. 59-66

66

[8] Alyahya, S., & Alsayyari, M. (2020). Towards better crowdsourced software testing process. International Journal

of Cooperative Information Systems, 29(01n02), 2040009.

[9] Mittal, S., & Sangwan, O. P. (2018). Prioritizing test cases for regression techniques using metaheuristic

techniques. Journal of Information and Optimization Sciences, 39(1), 39-51.

[10] Shaheamlung, G., & Rote, K. (2020, June). A comprehensive review for test case prioritization in software

engineering. In 2020 International Conference on Intelligent Engineering and Management (ICIEM) (pp. 331-

336). IEEE.

[11] Bajaj, A., & Sangwan, O. P. (2019). A systematic literature review of test case prioritization using genetic

algorithms. IEEE Access, 7, 126355-126375.

[12] Ying, P., & Fan, L. (2017). Methods for test case prioritization based on test case execution history.

[13] Chen, J., Zhu, L., Chen, T. Y., Towey, D., Kuo, F. C., Huang, R., & Guo, Y. (2018). Test case prioritization for

object-oriented software: An adaptive random sequence approach based on clustering. Journal of Systems and

Software, 135, 107-125.

[14] Lima, J. A. P., & Vergilio, S. R. (2020). Test Case Prioritization in Continuous Integration environments: A

systematic mapping study. Information and Software Technology, 121, 106268.

