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This study aims to predict AXL kinase inhibitors utilizing a Bayesian 
Optimization-XGBoost machine learning model. A dataset comprising 
1074 compounds with IC50 values was collected from the ChEMBL 
database and molecular descriptors for each compound were 
calculated. The Bayesian Optimization-XGBoost model demonstrated 
superior performance in predicting AXL kinase inhibitors, achieving an 
accuracy of 86.24%, precision of 89.52%, recall of 89.52%, and an F1-
score of 89.52%, outperforming other models such as LightGBM, 
Logistic Regression, k-Nearest Neighbors (KNN), Support Vector 
Machine (SVM), and Naïve Bayes. This study underlines the importance 
of advanced machine learning techniques, particularly Bayesian 
Optimization-XGBoost, in predicting AXL kinase inhibitors, offering a 
promising approach for accelerating the early stages of drug discovery. 
Despite its success, the model's performance depends on the diversity 
and quality of the training data, and future work should focus on 
expanding the dataset and validating results with experimental studies. 
This computational method has the potential to streamline the drug 
development pipeline and contribute to the discovery of more effective 
cancer treatments. 
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1. Introduction 
Cancer continues to be a serious worldwide health issue, characterized by unregulated cell proliferation and the 
ability to spread to other parts of the body, therefore providing a substantial risk to human health and welfare [1]. 
In recent years, advancements in molecular biology and targeted therapies have opened new avenues for cancer 
treatment [2,3]. Among the promising targets, AXL kinase has gained attention as a significant contributor to the 
advancement and spread of cancer [4]. This kinase belongs to the TAM (Tyro3, AXL, Mer) family and is implicated 
in various malignancies, including but not limited to breast, lung, and pancreatic cancers [5]. Given its crucial 
involvement in cancer biology, inhibiting AXL kinase activity has emerged as a promising strategy for developing 
novel anticancer therapeutics [6,7]. 

The AXL receptor tyrosine kinase, which belongs to the TAM family, has a vital function in controlling several 
cellular processes such as cell survival, proliferation, and migration [8]. AXL is often overexpressed in cancer cells, 
contributing to their ability to evade apoptosis, promote angiogenesis, and facilitate metastasis [9]. Its association 
with epithelial-mesenchymal transition (EMT) and resilience to traditional therapies underscores its significance 
as a potential target for cancer drug development. Consequently, there is a growing interest in elucidating the 
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molecular mechanisms underlying AXL kinase activity and developing specific inhibitors to modulate its function 
for therapeutic purposes. 

In recent years, the integration of machine learning techniques in drug discovery has revolutionized the 
process of identifying potential therapeutic agents [10–13]. Machine learning has been a prominent method in 
Quantitative Structure-Activity Relationship (QSAR) modeling. It is used to predict the biological activity of 
substances by analyzing their structural characteristics [14,15]. QSAR explores the intricate relationship between 
a compound's structure and its biological activity, facilitating the prediction of how structural modifications may 
influence efficacy [16]. Machine learning algorithms offer the advantage of efficiently analyzing complex 
relationships within large datasets, providing insights that can significantly expedite the drug development 
pipeline [17–19]. 

Among the various machine learning methods employed in drug discovery, XGBoost has emerged as a popular 
and powerful algorithm [20]. XGBoost, an ensemble learning technique, is well-suited for handling diverse data 
types and achieving high accuracy [21,22]. However, to harness its full potential, optimizing hyperparameters is 
crucial. Bayesian optimization, a probabilistic model-based optimization approach, has proven effective in fine-
tuning the hyperparameters of complex machine learning models. Its ability to guide the search for optimal 
parameter configurations makes Bayesian optimization a valuable companion to enhance the performance of 
XGBoost in drug discovery. 

In this paper, we introduce an approach to predict AXL kinase inhibitors activity through the utilization of the 
Bayesian Optimization-XGBoost approach. Our contribution involves creating our own dataset by collecting 
compounds data from ChEMBL and calculating molecular descriptors of each compound to be used as features. 
Through a comprehensive comparative analysis against five other prevalent machine learning models used in AXL 
kinase inhibitor activity prediction, we establish the superior performance of our Bayesian Optimization-XGBoost 
model. The results confirm that our approach surpasses other models and highlights the significance of utilizing 
advanced machine learning techniques. This emphasizes the potential of Bayesian Optimization-XGBoost as a 
powerful tool for predicting AXL kinase inhibitors activity in drug discovery applications. 

2. Related Works 
Machine learning has become a potent tool in the field of cancer medication discovery in recent years, providing 
researchers with new approaches to find and create efficient treatments. By leveraging the predictive capabilities 
of machine learning algorithms, scientists can now predict and prioritize compounds based on their likelihood of 
inhibiting cancer growth and progression. This approach has the potential to significantly accelerate the drug 
discovery process, allowing researchers to focus their efforts on the most promising candidates. Several notable 
studies have already demonstrated the effectiveness of this strategy, showcasing impressive results that highlight 
the immense potential of machine learning in the fight against cancer. 

One notable work explored the use of a random forest method to predict androgen binding, agonistic, and 
antagonistic action in cancer. Their prediction models demonstrated commendable accuracy, with agonists 
predicted at an 80% rate, while the respective metrics for antagonists and binders were 72% and 78% [23]. 
Further study investigated the role of the androgen receptor and utilized QSAR and machine learning techniques, 
namely the Extreme Learning Machine algorithm. The model demonstrated a noteworthy prediction r-squared 
value of 0.737, suggesting its efficacy in forecasting the antiproliferative potential of these chemicals [24]. 
Additionally, a study conducted on VEGFR-2 kinase inhibitors, which are medications approved for clinical use 
that specifically target the growth of blood vessels in cancer, showcased the strength and reliability of the 2D-SAR 
model. The K-Nearest Neighbors (KNN) approach demonstrated a prediction accuracy of 82.4% for the training 
set and 80.1% for the test set. This highlights the reliable predictive capability of the model in discovering effective 
VEGFR-2 kinase inhibitors [25]. 

Another study applied random forest techniques to predict inhibitors of Estrogen Receptor Alpha in breast 
cancer drug discovery. Their model achieved an accuracy of 0.745, showcasing its capability to discern potential 
inhibitors effectively. This contribution underscores the versatility of machine learning in predicting inhibitors 
for specific cancer-related targets [26]. Furthermore, the challenge of predicting AXL kinase inhibitors was tackled 
through gradient boosting techniques, analyzing a dataset of 527 compounds. The resulting model boasted an 
accuracy of 0.85. Nonetheless, the discrepancy between accuracy and the F1-score hinted at a potential class 
imbalance issue [13]. While the accuracy suggests proficient prediction for one class, the F1-score reveals room 
for improvement in achieving balanced performance across multiple classes. This underscores the necessity for 
further research to enhance the model's capability in accurately predicting AXL Kinase Inhibitor Activity for a 
diverse range of compounds. The pursuit of a more nuanced and balanced model performance is crucial for its 
practical applicability in the complex landscape of cancer. 
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3. Methods 
A concise overview of the framework in this study is depicted in Fig. 1. Initially, dataset preparation is undertaken, 
followed by the execution of machine learning modeling to predict AXL kinase inhibitor activity. 

 
Fig. 1. Framework of Bayesian Optimization-XGBoost for AXL Kinase inhibitor prediction 

3.1 Data Collection and Preprocessing 
A total of 1074 compounds and their corresponding IC50 values was obtained from the ChEMBL database [27]. 
The IC50 values represent the half-maximal inhibitory concentration, quantifying the potency of compounds in 
inhibiting AXL kinase activity. A systematic pre-processing protocol was implemented to ensure data integrity and 
reliability. Duplicate entries were removed, and any instances with missing values were addressed. Following 
these steps, a total of 944 compounds remained in the dataset. Subsequently, the dataset was categorized into two 
classes based on IC50 values. Compounds with IC50 values less than 1000 were designated as the "active" class, 
indicating higher inhibitory activity, while those with IC50 values greater than or equal to 1000 were classified as 
the "inactive" class [28,29]. This resulted in 578 active compounds and 366 inactive compounds. 

Following the pre-processing procedures, the dataset was partitioned into separate training and testing sets 
to ease the training and evaluation of the model. The compounds were divided into two subsets: 80% of the data 
(755 compounds) was assigned to the training set, while the remaining 20% (189 compounds) formed the testing 
set. This division guarantees that the model is trained on a dataset of appropriate size and assessed on a distinct, 
unseen subset to evaluate its ability to generalize [30]. 

3.2 Molecular Descriptors 
Molecular descriptors are numerical representations of chemical compounds that encode information about their 
physicochemical, structural, and electronic properties [31,32]. These descriptors serve as a crucial bridge 
between chemical structures and their corresponding biological activities, aiding in the quantitative analysis and 
prediction of molecular behavior. In this study, molecular descriptors were calculated using the Mordred Python 
library [33].  

For each of the 944 compounds in our dataset, Mordred generated a set of 1074 molecular descriptors. These 
descriptors collectively provide each compound's detailed and multidimensional profile, capturing essential 
information that contributes to the compounds' AXL kinase inhibitory activity. The extensive nature of these 
descriptors allows for a thorough exploration of the structural and chemical properties influencing the biological 
function of the compounds. 

3.3 XGBoost Model 
XGBoost is a member of the ensemble learning family and is a machine learning algorithm. XGBoost combines the 
strengths of both boosting and regularization to create a robust and accurate predictive model. Boosting involves 
training a sequence of weak learners, typically decision trees, where each subsequent tree corrects the errors of 
the previous ones [34]. Regularization is introduced through shrinkage (or learning rate) and feature importance 
regularization, preventing overfitting and enhancing the model's generalization capabilities [35]. 
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The success of XGBoost can be attributed to its ability to handle complex relationships within the data and 
provide feature importance scores. This study employs XGBoost to predict AXL kinase inhibitor activity based on 
molecular descriptors. The general equation for the prediction made by XGBoost can be expressed as follows: 

𝑦𝑦�𝑖𝑖 = �𝑓𝑓𝑘𝑘(𝑥𝑥𝑖𝑖)
𝐾𝐾

𝑘𝑘=1

 
 (1) 

 
Where 𝑦𝑦�𝑖𝑖  is the predicted output for the 𝑖𝑖-th data point, 𝐾𝐾  is the number of weak learners (trees), and 𝑓𝑓𝑘𝑘(𝑥𝑥𝑖𝑖) 
represents the output of the 𝑘𝑘-th weak learner for the input 𝑥𝑥𝑖𝑖 . 

3.4 Bayesian Optimization 
XGBoost requires effective tuning of hyperparameters to unleash its full potential. Bayesian optimization is an 
efficient method for this purpose, surpassing traditional approaches like random or grid search [36]. Bayesian 
optimization is especially beneficial in situations when the assessment of the objective function (performance 
measure) requires a significant amount of computer resources or takes a long time to complete [37,38]. 

Bayesian optimization is a method of optimizing a function that uses probabilistic surrogate models to 
estimate the objective function. It is a sequential process that iteratively improves the model's approximation [39]. 
The core concept is to strategically choose the subsequent set of hyperparameters to assess, using on the surrogate 
model's predictions and measures of uncertainty. This iterative procedure progressively improves the model and 
approaches the best combination of hyperparameters [40]. 

The process initiates with defining a prior distribution over the function 𝑓𝑓, to be optimized, embodying our 
initial beliefs before observing any data. This prior, represented by a Gaussian Process in Bayesian optimization, 
encodes assumptions about the smoothness and variability of 𝑓𝑓 . Gaussian Processes are favored for their 
flexibility and capacity to model the prior over the objective function with a set of kernel parameters, which dictate 
the function's smoothness and correlation structure [41]. 

Upon each iteration, Bayesian optimization combines the prior with the likelihood of observed data (objective 
function evaluations) to form a posterior distribution over 𝑓𝑓. This posterior reflects the updated beliefs about the 
function’s behavior and guides the selection of new hyperparameter configurations by predicting their expected 
performance. The balance between exploration and exploitation is maintained by an acquisition function, which 
leverages the posterior to identify points with the highest utility [42]. 

The posterior distribution is derived in this study by applying Bayes' theorem to combine the likelihood 
function and the prior distribution. Bayes' theorem states that the posterior distribution of a parameter, given the 
observed data, is directly proportional to the product of the probability function of the data given the parameter 
and the prior distribution of the parameter [43]. In Bayesian optimization, the surrogate model's posterior 
distribution over the objective function is updated iteratively as new data points (objective function evaluations) 
are observed. Initially, the prior distribution is established based on prior knowledge or assumptions about the 
objective function. As more data becomes available, the posterior distribution becomes more informed, leading to 
improved predictions and uncertainty estimates. This iterative process of updating the posterior distribution 
forms the foundation of Bayesian optimization's efficiency in searching for the optimal set of hyperparameters. 
[44] 

The acquisition function, often denoted as 𝛼𝛼(𝑥𝑥) is a key component of Bayesian optimization. It quantifies the 
utility of evaluating a specific set of hyperparameters and is used to decide the next configuration to explore. The 
acquisition function used is the Expected Improvement (𝐸𝐸𝐸𝐸 ), which balances the potential improvement in 
objective function value with uncertainty, as shown in Equation 2 [45]. 

 
𝐸𝐸𝐸𝐸(𝑥𝑥) = 𝔼𝔼[max(𝑓𝑓(𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) − 𝑓𝑓(𝑥𝑥), 0)] (2) 

Where 𝑥𝑥 is the set of hyperparameters to be evaluated, 𝑓𝑓(𝑥𝑥) is the predicted objective function value at 𝑥𝑥 from the 
surrogate model, 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  is the current best-known set of hyperparameters, and 𝔼𝔼 denotes the expectation. 

The hyperparameter space defined for XGBoost tuning in this study is presented in Table 1. The ranges 
specified for each hyperparameter guide the Bayesian optimization process, allowing the algorithm to explore and 
optimize the XGBoost model for the prediction of AXL kinase inhibitor activity. The maximum depth of every tree 
is specified by the'max_depth' option. 'learning_rate' regulates the optimization process's step size. 'n_estimators' 
indicates how many rounds of boosting there will be. The value 'min_child_weight' determines the lowest total 
instance weight necessary for a child. The fraction of training data used in each boosting round is determined by 
the variable "subsample." It is specified by 'colsample_bytree' how many features are used in each boosting cycle. 
The minimal loss reduction required to create a second division on a leaf node is controlled by "gamma." 
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Table 1 Hyperparameter space for the Bayesian optimization 
Hyperparameter Range 

max_depth (5, 25) 
learning_rate (0.01, 0.5) 
n_estimators (50, 150) 
min_child_weight (1, 10) 
subsample (0.5, 1) 
colsample_bytree (0.5, 1) 
gamma (0, 1) 

3.5 Performance Evaluation 
The Bayesian Optimization-XGBoost model's ability to predict AXL kinase inhibitor action was extensively 
evaluated using key metrics including accuracy, precision, recall, and F1-score. Accuracy is a metric that quantifies 
the overall correctness of a model's predictions. Precision is a statistical measure that quantifies the proportion 
of accurately anticipated positive observations out of the total number of predicted positives. Recall assesses the 
model's capacity to accurately identify all true positive instances. The F1-score is a metric that considers both 
precision and recall in a balanced manner. The formulas for accuracy, precision, recall, and F1-score are provided 
in formulas 3, 4, 5, and 6, respectively [46,47]. 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  
𝑇𝑇𝑇𝑇 +  𝐹𝐹𝐹𝐹

𝐹𝐹𝐹𝐹 +  𝐹𝐹𝐹𝐹 +  𝑇𝑇𝑇𝑇 +  𝑇𝑇𝑇𝑇
 (3) 

 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  

𝑇𝑇𝑇𝑇 
𝑇𝑇𝑇𝑇 +  𝐹𝐹𝐹𝐹

 (4) 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  
𝑇𝑇𝑇𝑇 

𝐹𝐹𝐹𝐹 +  𝑇𝑇𝑇𝑇
 (5) 

 
𝐹𝐹1 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  2

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ×  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 +  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

 (6) 

 
TP (True Positives) are instances correctly identified as belonging to the positive class, while FP (False 

Positives) are instances incorrectly classified as positive. TN (True Negatives) are instances correctly classified as 
negative, and FN (False Negatives) are instances incorrectly labeled as negative [48]. 

In addition to evaluating the XGBoost model, a further analysis was conducted by comparing its performance 
against five other models: LightGBM, Logistic Regression, KNN, Support Vector Machine (SVM), and Naïve Bayes. 
This comparative assessment aimed to provide insights into the relative strengths and weaknesses of the XGBoost 
model for AXL kinase inhibitor activity prediction for cancer drug discovery. 

4. Results 
This study has successfully trained and optimized an XGBoost model using Bayesian optimization. The Bayesian 
optimization process for hyperparameter tuning in LightGBM resulted in selecting the most optimal configuration, 
enhancing the model's performance in classifying AXL kinase inhibitor activity. The best hyperparameter set, with 
a corresponding target value of 0.8624, includes values such as 'colsample_bytree': 0.6239, 'gamma': 0.5612, 
'learning_rate': 0.4691, 'max_depth': 5, 'min_child_weight': 8, 'n_estimators': 95, and 'subsample': 0.7279. 

The specified 'colsample_bytree' value of 0.6239 indicates the fraction of features utilized during each 
boosting round, optimizing the model's ability to capture diverse information. The 'gamma' value of 0.5612 
regulates the minimum loss reduction required for further partitioning, contributing to efficient tree pruning and 
preventing overfitting. A 'learning_rate' of 0.4691 controls the step size during optimization, influencing the 
model's adaptability and convergence speed. With a 'max_depth' of 5, the model achieves an optimal balance 
between capturing complex relationships and preventing overfitting. The 'min_child_weight' value of 8 sets the 
minimum sum of instance weight required in a child, influencing the model's sensitivity to small variations. 
'N_estimators' at 95 defines the number of boosting rounds, balancing computational efficiency and model 
accuracy. Lastly, 'subsample' at 0.7279 determines the fraction of training samples used in each boosting round, 
contributing to robustness and preventing overfitting. 
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The performance of the AXL kinase inhibitor activity classification models is presented in Table 2. XGBoost 
demonstrates superior performance across all metrics, attaining an accuracy of 86.24%, precision of 89.52%, 
recall of 89.52%, and an F1-score of 89.52%. However, it's notable that LightGBM surpasses XGBoost in recall, 
achieving an impressive score of 95.97%. Despite LightGBM's higher recall, XGBoost still stands out for its 
remarkable precision, indicating a low rate of false positives and a strong ability to correctly identify compounds 
with true inhibitory activity. Additionally, XGBoost demonstrates balanced performance reflected in its F1-score, 
highlighting its proficiency in capturing both true positive and true negative instances. This balance indicates the 
model's ability to effectively identify compounds with AXL kinase inhibitory potential while minimizing the risk 
of false negatives. 

In terms of run time, the models in Table 2 exhibit relatively similar performance, with XGBoost requiring just 
0.11 seconds for execution. While this run time is marginally longer than that of some models like KNN and Naïve 
Bayes, it remains within an acceptable range and is not significantly different. This slight difference in run time is 
unlikely to impact the practical usability of XGBoost, especially considering its outstanding performance in 
accurately classifying AXL kinase inhibitor activity. Thus, despite minor variations in run time, the overall 
efficiency of XGBoost remains compelling, further supporting its preference as the primary choice for classification 
tasks. 

Table 2 Performance metrics of AXL kinase inhibitor activity classification models 
Model Run Time 

(Seconds) 
Accuracy 

(%) 
Precision 

(%) 
Recall 

(%) 
F1-score 

(%) 
Bayesian Optimization-XGBoost 0.11 86.24 89.52 89.52 89.52 
LightGBM 0.12 84.13 82.64 95.97 88.81 
Logistic Regression 0.11 83.60 88.43 86.29 87.35 
KNN 0.01 81.48 86.18 85.48 85.83 
SVM 0.15 84.66 89.26 87.10 88.16 
Naïve Bayes 0.01 75.66 79.55 84.68 82.03 

 
The ROC curve analysis revealed a comparative assessment of various machine learning models for classifying 

AXL kinase inhibitor activity, a crucial parameter in cancer drug discovery (Fig. 2). The XGBoost model 
demonstrated the highest discriminative performance, boasting an AUC of 0.908. Close behind were the SVM and 
Logistic Regression models, with AUCs of 0.907 and 0.899, respectively. These models excelled in distinguishing 
between active and inactive compounds. The LightGBM model achieved an AUC of 0.867, while the KNN model 
followed closely with an AUC of 0.864, indicating moderate performance. However, the Naïve Bayes model fell 
short with an AUC of 0.813, suggesting lower specificity and sensitivity in classification tasks within this study. 

 

 
Fig. 2 ROC curve of the machine learning models 
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In the XGBoost model employed for classifying AXL kinase inhibitor activity, the top five molecular 
descriptors, as visualized in Fig. 3, provided key insights into the structural attributes that were most predictive 
of inhibitor efficacy. The most significant descriptor, ATSCi, represents a 2D autocorrelation descriptor weighted 
by ionization potential, capturing the influence of electron distribution on molecular interaction. This descriptor 
captures how electron distribution influences molecular interactions, which is crucial in understanding how 
inhibitors interact with the AXL kinase active site. EState_VSA9, the second most important feature, reflects the 
electronic state for a specific van der Waals surface area, indicative of the compound's potential reactivity and 
interaction surface. Van der Waals interactions are essential in molecular recognition and binding, and this 
descriptor helps gauge the compound's potential reactivity and interaction surface, which is vital for effective 
kinase inhibition. The AATSC1dv descriptor, slightly less influential, associated with a 3D autocorrelation 
descriptor influenced by valence electrons, offering spatial and electronic information pertinent to binding 
affinity. The nHBacc descriptor quantifies the number of hydrogen bond acceptors, a crucial factor in the 
bioactivity of kinase inhibitors, as these interactions often stabilize the inhibitor-kinase complex. Lastly, nBase 
represents the count of basic atoms, providing insight into the compound's ability to engage in protonation or 
charge-charge interactions, which can be critical for biological activity. Together, these descriptors form a 
comprehensive profile that the model uses to distinguish between active and inactive AXL kinase inhibitors. 

 
Fig. 3 Feature importance of the XGBoost model 

To assess the applicability domain of our XGBoost model, we visualized the Principal Component Analysis 
(PCA) plot in Fig. 4. In this figure, PC-1 and PC-2 represented the first two principal components, which accounted 
for the majority of variation in the molecular descriptor dataset used for model training. The results showed that 
PC-1 explained 18.73% of the total variance and PC-2 accounted for 13.60% of the total variance. While 32.33% 
might have seemed relatively low, given the high number of molecular descriptors used, this percentage was quite 
substantial, indicating a significant portion of the dataset's variability was captured within these two principal 
components. 

 
Fig. 4 Applicability domain of the XGBoost model 
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The distribution of points, with the training set represented by blue points and the testing set by orange 
points, suggests a strong overlap between the two datasets. This overlap indicates that the testing set is a good 
representation of the chemical space covered by the training data. The convex hulls drawn around each dataset 
delineate the outer boundaries within which the model's predictions are deemed reliable. The substantial overlap 
between the training and testing sets within these boundaries suggests that the model generalizes well and has a 
broad applicability domain. This overlap implies that the model is likely to make accurate predictions for new 
compounds as long as they fall within this defined domain. However, compounds lying outside of these boundaries 
may be beyond the model's applicability domain, and predictions for such compounds would be less reliable or 
considered extrapolations. 

5. Discussion 
The present study introduces a sophisticated computational approach to cancer drug discovery by leveraging an 
XGBoost model enhanced with Bayesian Optimization for the classification of AXL kinase inhibitor activity. By 
employing a comprehensive set of molecular descriptors, the model predicts the inhibitory potential of chemical 
compounds with high accuracy, holding significant implications for expediting the early stages of drug discovery 
and development. The identification of the most predictive features of AXL kinase inhibitors not only optimizes 
the search for novel cancer therapeutics but also contributes to a deeper understanding of the molecular 
mechanisms underlying inhibitor efficacy. 

The implications of this study extend beyond the computational domain and into the practical aspects of 
pharmaceutical research. The developed predictive model can serve as a powerful preliminary screening tool, 
enabling researchers to prioritize compounds for synthesis and biological testing. By focusing resources on the 
most promising candidates, this approach has the potential to significantly reduce the time and cost associated 
with the drug development pipeline. The model's high classification accuracy can streamline the subsequent lab-
based validation processes, ultimately leading to the discovery of more targeted and effective cancer treatments. 

Moreover, the feature importance analysis conducted in this study provides valuable insights into the 
molecular properties that contribute to AXL kinase inhibitor activity. By identifying the key descriptors that 
influence inhibitor efficacy, this research lays the groundwork for the rational design of novel compounds with 
enhanced therapeutic potential. The knowledge gained from this analysis can guide medicinal chemists in the 
optimization of lead compounds, enabling the development of more potent and selective AXL kinase inhibitors. 

Nevertheless, the study had certain limitations. The effectiveness of the predictive model is inherently 
dependent on the quality and scope of the training data. If the training dataset lacks diversity or is biased towards 
certain chemical spaces, the model's applicability domain may be limited, potentially overlooking viable inhibitor 
candidates. To address this issue, future studies should aim to expand the chemical space of the training data by 
incorporating a broader range of molecular descriptors and inhibitor classes. This expansion will enhance the 
model's generalizability and increase its potential to identify novel AXL kinase inhibitors from diverse chemical 
backgrounds. 

Furthermore, it is crucial to recognize that the in-silico predictions generated by the model need to be 
substantiated through in vitro and in vivo studies. While computational methods provide valuable insights and 
predictions, the biological relevance of these findings must be validated experimentally. Collaborations between 
computational chemists and experimental biologists will be essential to bridge the gap between in silico 
predictions and real-world cancer therapies. By integrating computational findings with experimental validation, 
researchers can gain a more comprehensive understanding of the mechanisms of action and potential side effects 
of the predicted inhibitors. 

6. Conclusion 
This study demonstrates the potential of Bayesian Optimization-XGBoost to classify AXL Kinase inhibitor activity, 
which could expedite and refine the search for new cancer treatments. The Bayesian Optimization-XGBoost model 
obtained an accuracy of 86.24%, precision of 89.52%, recall of 89.52%, and an F1-score of 89.52%, outperforming 
other models such as LightGBM, Logistic Regression, KNN, SVM, and Naïve Bayes. Despite the promising results, 
the reliability of these predictions is inherently tied to the dataset's comprehensiveness and the model's 
applicability domain. Future endeavors should focus on enhancing the dataset diversity, corroborating 
computational predictions with experimental data, and expanding the model's utility through the inclusion of 
additional biological parameters. Through such improvements, this computational approach holds the promise of 
becoming an invaluable asset in the ongoing quest for effective cancer therapeutics. 

Appendix A: Source Code 
The source code utilized for this study is available at:  https://github.com/trizkynoviandy/ML-AXL-Kinase 
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