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Researchers and investors can accelerate the development of 
innovative materials, methods, and procedures by using machine 
learning technologies. In materials science, one key objective of 
employing such methods is to make it easier to identify and quantify 
high features throughout the chain of manipulation, organization, 
possessions, and efficiency. An overview of effective uses of automated 
learning and statistics is given in this piece, which addresses specific 
challenges in continuous materials mechanics. The classification of 
these applications is based on their nature, categorized as descriptive, 
predictive, or prescriptive, all aiming to identify, anticipate, or optimize 
crucial attributes. The selection of the most suitable machine learning 
technique is influenced by factors such as the unique use case, content 
type, data characteristics, geographical and temporal scales, formats, 
targeted knowledge gain, and affordable computing expenses. Various 
examples are explored, including using various artificially generated 
share network architectures on an as-needed basis in conjunction with 
additional data-driven approaches such as basic constituent 
assessment, decisions shrubs, models, woods, trees, supported matrix, 
and Gaussian learners. 
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1. Introduction 
The application of machine learning techniques in continuous materials mechanics is driven by the potential to 
expedite and streamline the discovery and development of new materials for future applications [1]. The 
significant challenge lies in manipulating material qualities to achieve a desirable blend of features and 
performance attributes. The primary goals in developing materials for specific applications involve detecting 
linked physical events across various spatiotemporal scales, addressing statistical errors, and regulating the 
parameter space within materials structures [2]. It is crucial to consider the statistical variation of the current 
process to connect the impacts of process settings to microstructural traits, material qualities, and performance 
characteristics across different scales. Additionally, data mining assists scientists in exploring and comprehending 
intricate nonlinear interactions at a fundamental level [3-6]. 

Data mining and machine learning techniques are frequently employed as stepping stones in addressing 
complex issues until the nature of the connection of interest can be encapsulated by more general physical models 
replacing the learned algorithms. There is exceptional potential to objectively calibrate unexpected model forms 



J. of Soft Computing and Data Mining Vol. 5 No. 1 (2024) p. 122-131 123 

 

 

and parameters in physics-based models through machine learning techniques grounded in rigorous statistical 
methods [7]. Methodologically, the fields of machine learning and data mining, components of the data science 
toolkit, are closely connected to applied statistics, and their distinctions are intertwined [8]. The cross-industry 
standard outlines step in data mining, including issue comprehension, data understanding, data preparation, 
modeling, data evaluation using machine learning, and implementing trained algorithms. Data mining and 
machine learning methods involve training, testing, and verifying implemented algorithms, along with proper pre-
processing of relevant data [9, 10]. Consequently, the prescriptive goal of optimization is often achieved through 
post-learning activities like feature optimization and decision-making [11]. 

The literature offers various database methodologies to address challenges within continuous materials 
mechanics (Figure 1). Our approach encompasses issues throughout the process-structure-property-performance 
chain, considering diverse data dimensions across geographical and temporal scales. To systematically study data 
mining and machine learning methods, we've categorized them into four primary areas based on application 
fields: performance, microstructure, mechanical characteristics, and process parameters. Within each area, topics 
are further classified into three categories—descriptive, predictive, and prescriptive—depending on the type of 
machine learning and data mining activity and the goal pursued. 

 

 

Fig. 1 Classification of the system 

This difference was first put out by Delen and Ram [12], mainly for use in business intelligence. Researchers 
investigated and divided data mining tasks between basic and authoritarian groups. On the other hand, to address 
practical enhancements in chemical biomechanics and process-structure-property-performance links, we provide 
a proactive machines intelligence task section. Thus, our adopted hierarchy offers a comprehensive framework 
for examining various methodologies in this review. 

This analysis includes an initial compilation of descriptions of key machine learning techniques, which can be 
used independently or in combinations across diverse research. As Witten et al. emphasize, it's important to note 
that no single machine-learning approach is universally suitable for all data mining tasks [13-15]. The notion of 
the ubiquitous learner, according to their experience, remains a utopian fiction. 

The field of machine learning is currently in its nascent stages, undergoing constant evolution. Despite many 
techniques and algorithms for years, recent developments have brought forth new approaches, shaping machine 
learning into a fresh and continually developing discipline [16, 17]. Precisely defining what machine learning 
entails remains challenging due to its dynamic nature. Data-driven methodologies are permeating various fields, 
including materials science, where specific problems and diverse data profiles have catalyzed the creation of novel 
variations and customized machine learning techniques. It is crucial not to underestimate the significance of 
"mainstay methods" in machine learning, particularly neural networks (ANNs) comprised of computers [18-20]. 
These networks, theoretically universal and flexible enough to approximate any function within data, maintain 
their importance despite evolving methodological landscapes (figure 2). While continuous changes are expected 
in the coming years, the approaches outlined in this chapter do not provide an exhaustive list of machine learning 
techniques practical for materials mechanics. Data science approaches are concurrently complementing and 
integrating with traditional materials science research procedures [21-23]. 

In this specific application, ANNs emerge as the most frequently encountered type of machine learning. 
Originating from the basic 1958 predecessor formulation known as the perceptron, ANNs have gained increasing 
popularity as the limitations that once impeded their use—specifically, increasing processing power and data 
availability have been overcome. Initially designed as a simple one-layer ANN, the perceptron functioned as a 
linear predictor [24-27]. 



124 J. of Soft Computing and Data Mining Vol. 5 No. 1 (2024) p. 122-131 

 

 

 

Fig. 2 Architecture of the system 

ANNs offer specialized memory neurons/units that effectively address the vanishing gradient problem, a 
common issue leading to sub-optimal local minima, especially with increasing neural layers. Long Short-Term 
Memory (LSTM) networks, derived from ANNs, have gained popularity alongside deep learning architectures to 
overcome local entrapments in deep learning [28, 29]. In essence, LSTMs allow for greater information storage by 
"saving" relevant data points over time, preventing them from being drowned out and dispersing their error 
corrective signal across longer periods [30]. 

Randomized neural networks, providing individual neurons with random excitatory or inhibitory spikes, and 
radial basis ANN, essentially shallow Feedforward Neural Networks (FFNNs) using radial basis functions for 
individual neuron specialization, are essential to discuss [31]. 

2. Proposed Methodology 
Machine learning is still in its infancy and constantly evolving in scientific research [32]. Although various 

methods and algorithms have existed for some time, recent advances have enhanced machine learning, making it 
a dynamic field that is constantly activating and changing. Because machine learning is constantly growing, it is 
difficult to pinpoint a specific definition of machine learning. Data-driven approaches have been integrated into a 
variety of fields, including materials science, leading to creative modifications and specialized machine learning 
techniques suited to specific problems and different data profiles 

3. Algorithm 
It is crucial not to underestimate the significance of foundational machine learning methods, exemplified by ANNs 
composed of interconnected computers [33]. These ANNs, theoretically versatile enough to approximate any 
function inherent in data, should not have their importance diminished by methodological domain-specificity [34]. 
Although we anticipate continuous changes in the coming years, the approaches outlined in this discourse cannot 
be considered an exhaustive list of machine learning techniques practical for materials mechanics (Figure 3). This 
is because data science approaches are designed to complement and integrate with traditional materials science 
research procedures. 
Step 1: Identify key areas within continuum materials mechanics where machine learning and data mining 

techniques are applied. 
Step 2: Collect relevant literature and research papers on the use of machine learning and data mining in 

continuum materials mechanics. 
Step 3: Review common datasets used in continuum materials mechanics research, including material properties, 

experimental data, and simulation results. 
Step 4: Analyze different machine learning and data mining algorithms employed for tasks such as material 

property prediction, microstructure characterization, and material behavior modeling. 
Step 5: Evaluate the strengths and limitations of machine learning and data mining approaches compared to 

traditional continuum mechanics methods. 
Step 6: Investigate challenges such as data scarcity, model interpretability, and computational efficiency when 

applying machine learning in continuum materials mechanics. 
Step 7: Explore hybrid approaches combining physics-based models with machine learning techniques to enhance 

predictive accuracy and physical interpretability. 
Step 8: Assess the impact of machine learning and data mining on advancing understanding and prediction 

capabilities in continuum materials mechanics. 
Step 9: Identify emerging trends and future research directions for integrating machine learning and data mining 

in continuum materials mechanics. 
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Step 10: Synthesize findings from the review to provide insights for researchers and practitioners aiming to 
leverage machine learning and data mining in continuum materials mechanics applications. 

ANNs, particularly the well-known perceptron from 1958, have become the most prevalent form of machine 
learning in specific applications. Originally conceived as a simple one-layer ANN, the perceptron functioned as a 
linear predictor [235, 36]. Modern FFNNs are essentially multilayer perceptron’s with connected vertices, 
allowing a "feedforward" signal to pass through the network in one direction. 

 

 

Fig. 3 Workflow methodology of the system 

As the signal passes through the layers, it gradually changes from input to output. These networks typically 
use backpropagation gradient descent error reduction approaches that address issues such as local minima, 
activation function selection, overfitting, optimal number of layers and neurons, and network interpretability [37]. 
The difficulties associated with further study of ANNs must be recognized and overcome. These difficulties include 
overfitting, avoiding local minima, choosing appropriate activation functions, determining the optimal number of 
layers and neurons for each layer, and making the network understandable to people. They are not limited to 
these. These methods need to be continually improved to get the most out of machine learning in materials science 
and other scientific fields. Specialized memory neurons or units have emerged in the field of ANN as a potential 
solution to the vanishing gradient problem. Suboptimal local minima often result from this problem, especially as 
the number of neural layers’ increases.  

These techniques enable directed loops within the ANN topology, fostering communication that oscillates and 
overlaps with the processing of subsequent samples, facilitating data transfer across sequence stages in a 
purposeful manner [38]. While each technique discussed is primarily used individually in the context of materials 
science, it is anticipated that future developments will witness increased utilization of these techniques in tandem. 
They may be integrated into sequential serial learning pipelines, combining methods like clustering for feature 
selection with convolutional neural networks (CNNs) for subsequent feature learning, or incorporated into 
ensemble techniques where each approach contributes to a collective prediction [39, 40]. 

4. Microstructure 
Extensive research has been conducted on microstructural quantification, categorization, evolution, and 
reconstruction, leading to a wealth of published findings [41]. Bridging length scales around the microstructure 
can be achieved through various methods, such as top-down approaches like localization or bottom-up methods 
like homogenization [42]. Additionally, this endeavor employs prescriptive, predictive, and descriptive methods, 
as shown in Figure 4. Descriptive identification of links between process parameters, generated microstructures, 
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resulting mechanical properties, and related fatigue events and failure mechanisms enables the prediction and 
prescriptive tailoring of microstructural features for optimization. 
 

 

Fig. 4 Implementation of the system 

A newly created nanoscale producer created a large collection of porous objects with various characteristics. 
Research findings measured the real porous wall shape using high-quality X-ray ultrasonography. We calculated 
and contrasted Bayesian formulations for both modeled and real cell structures using Principal Component 
Analysis (PCA) of two-point spatial connections, providing an objective measure of the variation between distinct 
datasets. This led to the quantification of porous membrane architectures and the acquisition of low-dimensional 
representations through PCA on these two-point statistics [43]. Key characteristics, such as the stretching factor, 
stretching direction, porosity, and pore size, were identified as the foundation of the low-dimensional space. 
Linkages between a broad range of microstructure properties and their impact on the low-dimensional space 
facilitated accurate estimations of the actual membrane characteristics using the basis matrix and the main 
component value [44]. 

The primary objective was to expand the application of the statistical continuum theory-based prior linking 
approach to accommodate greater elastic contrasts in composition, overcoming previous applicability constraints. 
Constructing a predictive model involves two main components: regression and feature extraction, both crucial 
in establishing correlations. To evaluate the data-driven predicting model's effectiveness for localization, three 
test scenarios were explored. 

5. Mechanical Properties 
The accurate anticipation and control of mechanical material qualities are imperative as they are closely 
intertwined with and significantly influenced by process variables and the resulting microstructures. Constitutive 
equations have traditionally been employed to elucidate mechanical behavior in simulations [45]. Prior to the 
recent surge in machine learning's popularity within the scientific community, various strategies, including ANN, 
were proposed to replace foundational equations with data-based techniques. Notable instances include 
approximating yield strength with consideration for specific technical obstacles in estimating the shear of elastic 
expansion and compression toughness of concrete elements and developing a super alloy using metal. Prescriptive 
instruction duties like enhancement, prediction tasks like grouping, and explanatory tasks like identifying 
patterns are often implemented in order to satisfy fundamental property needs for specific uses. 

6. Performance Results 
The performance of materials, particularly regarding fatigue and failure, becomes increasingly critical when 
subjected to stress over time. Specific material behaviors, such as fracture initiation, development, and formation 
under static and cyclic loads, dictate the material's behavior, leading to fatigue. Utilizing machine learning 
techniques to identify connections to fracture initiation, crack growth, and fatigue life performance is essential in 
selecting and developing optimal features throughout the process-structure-property-performance chain, as 
shown in Table 1. 
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Table 1 System features and their description, benefits and challenges  
Feature Description Benefits Challenges 

Data sources: Experimental data (e.g., stress-
strain curves, microscopy 
images), simulation data (e.g., 
finite element models). And 
potentially property databases. 

Rich information 
capturing material 
behavior across 
different scales and 
conditions. 

Data quality and availability 
limitations, potential 
inconsistencies between 
sources, privacy concerns 
for proprietary data 

Machine 
learning 
techniques: 

Supervised learning (e.g., 
regression, classification) for 
predicting material properties, 
microstructure analysis, and 
failure prediction. Unsupervised 
learning (e.g., clustering 
dimensionality reduction) is used 
to identify material phases, 
hidden patterns, and anomalies. 

Improved accuracy and 
efficiency compared to 
traditional methods, 
ability to learn complex 
relationships from large 
datasets 

Model interpretability and 
explainability. Potential bias 
in algorithms and data, 
challenges in handling noisy 
and incomplete data 

Data mining 
techniques: 

Feature engineering 
dimensionality reduction and 
outlier detection to prepare data 
for machine learning and identify 
relevant information 

Improved model 
performance by 
extracting meaningful 
features and reducing 
data complexity. 

It requires domain 
knowledge and expertise for 
effective feature selection 
and potential loss of 
information in 
dimensionality reduction. 

Multiscale 
modeling: 

Combines data from different 
scales (microstructure, 
macroscale) through multiscale 
modeling frameworks to predict 
material behavior at various 
levels. 

Enables a more accurate 
and complete 
understanding of 
material behavior 
across different length 
scales. 

The complexity of multiscale 
models, challenges in data 
integration and 
computational cost 

Material 
design and 
optimization: 

Uses machine learning to design 
novel materials with desired 
properties, optimize 
manufacturing processes, and 
predict performance under 
specific conditions. 

Accelerates material 
development and 
discovery and optimizes 
material performance 
for specific applications. 

Ethical considerations 
regarding potential biases in 
design algorithms, ensuring 
transparency and fairness in 
material development. 

 
Corrosion, another intricate process, is strongly influenced by the environment, mechanical stresses, and the 

composition and microstructure of the alloy [46]. Metallic biomaterials derived from magnesium alloys may 
biodegrade, necessitating careful planning of the deterioration rate of implants like screws and plates. This 
ensures that the implant supports the load until the bone sufficiently heals to bear mechanical loads. The challenge 
lies in the multitude of factors combined with the extended duration of a corrosion test [47]. A crucial discovery 
was that the quantity of CO2 and the concentration of NaCl were the two primary variables governing the 
corrosion rate. While the former was widely known, our research highlighted the significance of the latter. This 
observation is especially crucial since the CO2 content varies significantly between in vitro and in vivo tests. The 
trained ANN enables a quantitative estimation of the corrosion rate under given conditions, aiding in planning 
additional trials in specific regions of interest [48-49]. 

7. Discussion 
In the realms of health monitoring and lifespan prediction for engineering structures, data has historically played 
a pivotal role. Recent advancements in Bayesian methods and artificial intelligence, particularly artificial neural 
networks, have inspired numerous articles presenting innovative data-driven methodologies for lifespan 
prediction [50-52]. 

Simulating the incubation life of the cracking process, particularly in a specific microstructure exposed to high 
fatigue stresses, revealed a proportional link between the diameter of included voids and anticipated fatigue 
performance, while the breadth of voids exhibited an inverse correlation to fatigue life. 
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Fig. 5 Application of ML in continuum materials mechanics for the system 

A deep neural network, specifically a graph segmentation network, was employed to identify fracture features 
within the material. Subsequently, a recurrent neural network modeled the evolution of these features. Training 
the system using a collection of time series graphs from 145 simulations allowed the concurrent prediction of the 
evolution of various material characteristics based on their initial conditions. Despite a 2% error in average 
fracture size prediction, a 13% error in damage size distribution, and an absolute error of 15% in the anticipated 
time to failure compared to equivalent simulation findings, the network demonstrated its capability. The network 
was further trained using previously generated inaccurate predictions to enhance accuracy, enabling it to learn 
from its errors and progressively minimize prediction errors. 

8. Conclusion 
In continuum solids mechanics, a diverse range of machine learning techniques has proven effective, 
independently or in various combinations. These techniques serve prescriptive, predictive, or descriptive 
purposes within the procedure, structure, attribute, and outcome chain. Accelerating item evaluation and 
synthesis is made possible using these approaches, commonly in a scale-bridging fashion. Integrating data science 
tools into established processes, such as combining classic constitutive model-based simulation tools with data-
driven process learning and statistical techniques for data-driven simulations, is a promising approach. The 
synergy between data-based and physics-based modeling can yield hybrid analytics and simulations that are both 
reliable and efficient. Reinforcement learning, an intriguing technique, is promising for continuous materials 
mechanics. Particularly beneficial when decisions are integral to materials-related scenarios, reinforcement 
learning is a viable strategy in materials mechanics. 
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