
Evolution in Electrical and Electronic Engineering Vol. 4 No. 1 (2023) 589-596

© Universiti Tun Hussein Onn Malaysia Publisher’s Office

EEEE

Homepage: http://publisher.uthm.edu.my/periodicals/index.php/eeee

e-ISSN : 2756-8458

*Corresponding Author: chessda@uthm.edu.my
2023 UTHM Publisher. All rights reserved.
publisher.uthm.edu.my/periodicals/index.php/eeee

 Hardware Implementation of Hough Transform

for Straight Line Detection

Dhivaakar Ravindran1, Chessda Uttraphan1*

1 Faculty of Electrical and Electronic Engineering,

Universiti Tun Hussein Onn Malaysia, Parit Raja, 86400, Johor, MALAYSIA

*Corresponding Author Designation

DOI: https://doi.org/10.30880/eeee.2023.04.01.071

Received 01 February 2023; Accepted 10 April 2023; Available online 30 April 2023

Abstract: The use of line detection algorithms is becoming increasingly important in

the field of image processing, particularly in areas that require automation, such as

lane detection in self-driving cars and the localization of robots in the field of robotics.

The Hough Transform is considered as a common algorithm for line detection, but its

computationally intensive nature can lead to poor performance when implemented on

general-purposed processor. The proposed work looks at implementing the Hough

Transform on a Field Programmable Gate Array (FPGA) instead, as FPGAs holds

parallel data processing capabilities, which reduces system latency. The work

involves identifying the necessary parameters for the application of Hough Transform

and designing the system by utilizing RAM and ROM modules on the Intel Quartus

Prime, while taking into account the arithmetic operations required to produce the

desired output. The execution time of the Hough Transform on an FPGA was

compared to its execution time in the MATLAB software environment, with the result

showing that the FPGA’s implementation is 94 times faster than the execution of

Hough Transform in MATLAB.

Keywords: Field Programmable Gate Array, Hough Transform, Line Detection

1. Introduction

In the current world filled with technological advancements in different sectors such as the medical

field, manufacturing, and transportation, it is evident that the automobile sector has improved their

production of vehicles in terms of technologically aided features that can be found in newer batches of

vehicles [1]. This technological advancement the industry involves the use of line detecting algorithms such

as Hough Transform in order to detect the lanes present on the road [2]. Similarly various sectors in the

industry require the use of line detecting algorithms such as surveillance and security, medical imaging, and

industrial automation whereby the line detection algorithms are used to detect and tract objects on a

conveyor belt, guiding robots to pick and place the objects in the correct location [3]. However, the

implementation of Hough Transform in general-purposed processors cannot deliver high-performance

Formatted: Line spacing: Multiple 1.08 li

Ravindran et al., Evolution in Electrical and Electronic Engineering Vol. 4 No. 1 (2023) p. 589-596

590

system because of the serial processing nature in the general-purposed processor [4]. This leads to

bottlenecks due to multiple input handlings such as image processing, memory allocation, and mathematical

operations [5]. In general-purposed processor, the computation is conducted in a sequential order whereby

only one line of code is executed at a time. Meanwhile, the proposed work involves the implementation

Hough Transform on a Field Programmable Gate Array (FPGA), which offers parallel processing whereby

the circuit on an FPGA will able to compute multiple functions such as handling the processing of images

and digital signals in a single clock execution time [6]. Therefore, the application of image processing and

recognition on an FPGA is suitable due to its high concurrency and real time image processing capabilities

[7].

In this work, the design is simulated in ModelSim, where execution time is compared with the software

environment for a fixed parameter of number of pixels.

2. Materials and Methods

2.1 Block Diagram

The system is initially developed based on the mathematical notation of Hough Transform given in Eq.

(1), where is the distance from the origin to the closest point on the straight line, (x, y) is the coordinate

of the detected edge pixel, and theta is the angle between the x axis and the line connecting the origin with

that closest point. The Hough Transform can be implemented in the MATLAB environment with the

provided built-in functions that allows users to call the function when the user requires line detection to be

executed upon an image. The effectivity of the algorithms in detecting lines in an image can be analyzed

by feeding images to the algorithm in MATLAB. Once the suitable parameters are obtained, the operation

of Hough Transform can be modified to operate in a hardware level. The hardware level design of the

system utilizes multiple RAM and ROM modules to utilize memory storage and lookup tables in the system.

The proposed design is illustrated in Figure 1. The targeted hardware is the Cyclone IV on the DE1-SoC

board.

𝜌 = 𝑥 cos 𝜃 + 𝑦 sin 𝜃 (Eq.1)

Figure 1: Block diagram of the system

Ravindran et al., Evolution in Electrical and Electronic Engineering Vol. 4 No. 1 (2023) p. 589-596

591

2.2 Methods

The image pixels in the coordinate space (x, y) which are represented as X _Pixel and Y_Pixel are fed

into the system respectively. At the same cycle, the value of θ is fed into the lookup table that consists of

Read-Only Memory (ROM) modules for Cosine and Sine respectively. The corresponding output from that

system is multiplied with X and Y pixels respectively and added together to form ρ. The value of ρ is fed

into the Random Access Memory (RAM) as an address and the corresponding data in that address is

accumulated. In order to push the values of X and Y pixels into their registers, a counter is required to be

implemented to keep count of the pixels that have been pushed whilst ensuring that all pixels are accounted

for in the line detecting system. Figure 2 shows details of the proposed system.

Figure 2: Details implementation of the proposed system

Multiple blocks such as COS, SIN, X and Y consists of a ‘Ld’ signal which represents a load signal. The

load signal acts like a gate which allows data to pass through only when the signal is active. This is useful

to ensure a synchronized data transfer is present between different components, or to control the flow of

data within the system. Other than that, the load signal also ensures that the existing data in the register is

not overwritten by a new input data before the operation has been completed. Once all of the number of

bits required for each wire has been identified along with the registers and their corresponding input and

output pins, the design can be coded via Verilog in Intel Quartus Prime.

2.3 Memory Initialization of Cosine and Sine

Memory Initialization refers to the process of loading data into a memory component at the start of a

design’s operation [8]. This can be done by specifying the initial values for each memory location in the

design, or by using a memory initialization file. Memory initialization is crucial in order to specify the

starting state of the ROM which will store the values for θ and their corresponding output for both sine and

cosine. Through the use of the memory initialization file, the memory can be pre-loaded with the data in

the form of a lookup table. To use the memory initialization file in Quartus Prime, the file must be created

and saved in a specific format. The file must contain one line of text for each memory location, with the

address and value separated by a space. The addresses must be listed in ascending order and the values must

be specified in hexadecimal format. Once the file has been created, it can be associated with a memory

Ravindran et al., Evolution in Electrical and Electronic Engineering Vol. 4 No. 1 (2023) p. 589-596

592

component in the Quartus Prime project, and the data will be loaded into the memory when the design in

compiled. Figure 3 and Figure 4 show the content initialization of the proposed design.

Figure 3: Memory initialization of cosine

Figure 4: Memory initialization of sine

2.4 Control Unit Hardware Design

A control unit is a part of the digital system that is responsible for controlling the flow of data and

instructions within the system. The control unit generates control signals which indicates the other units in

the system on what should be done based on the instructions that is received. In terms of this hardware

design, the control unit is required to control the state of the load signals that are present in the registers. In

order to determine the proper control flow of the hardware, the control unit is designed to switch between

different load signals based on states. In this work, there are a total of eight states in order to execute one

complete cycle to obtain the resulting value of ρ and the votes are accumulated at the address. The control

sequence is given in Table 1.

Table 1: CS-Table of design

Cycle RTL code LdC LdS LdX LdY LdR LdA Wren Ld1 Ld2

S0 idle; 0 0 0 0 0 0 0 0 0

S1 Theta <- Theta+8'd5 0 0 0 0 0 0 0 1 1

XY<-XY+1;

S2 CosOut<-CosIn; 1 1 1 1 0 0 0 1 1

SinOut<-SinIn;

XOut<-Xin;

YOut<-Yin;

Theta <- Theta+5;

XY<-XY+1;

S3 Rho<-XOut*CosOut+YOut*SinOut; 0 0 0 0 1 0 0 1 1

XY<-XY+d'd1;

Theta <- Theta+5;

S4 XY<-XY+d'd1; 0 0 0 0 0 0 0 1 1

Theta <- Theta+5;

S5 ACC<=ACC_in; 0 0 0 0 0 1 0 1 1

XY<-XY+d'd1;

Theta <- Theta+8'd5

ACC_Add=ACC+1;

S6 Param_R<=ACC_Add; 0 0 0 0 0 0 1 1 1

XY<-XY+d'd1;

Theta <- Theta+8'd5

Ravindran et al., Evolution in Electrical and Electronic Engineering Vol. 4 No. 1 (2023) p. 589-596

593

By correlating to the RTL code, the table can be designed accordingly. For each cycle, the trigger signals

that are consisting of 9-bit in total will be represented in the Control Unit of the design. Once the Control

Unit has been designed based on the table, the Datapath Unit, Control Unit and the Counter modules can

be can be obtained.

3. Results and Discussion

The initial results of execution time for an image were obtained through the software environment of

MATLAB. The built-in functions such as tic and toc were implemented in order to obtain the execution

time for specific instructions in which they are in between the tic and toc functions respectively. Based on

the implementation of a minimal 6 x 6-pixel value image, the elapsed time can be obtained in order to

execute Hough Transform as shown in Figure 5.

Figure 5: Elapsed time to execute Hough Transform

In the hardware design, multiple cycles are involved complete the operation of accumulating votes in

the address based on the mathematical operation of Hough Transform. In order to analyse the performance

of the system, the execution time of the design can be analysed with the time taken for the operation to be

completed in a software environment, which in this case is the use of MATLAB. In order to conduct a

sustainable analysis, an image with a minimal resolution of 6 x 6 is applied onto the application. The image

consists of a pre-edge detected straight line. The pixel value for each location is identified by using the

functions available in MATLAB as shown in Figure 6.

Figure 6: Pixel value of image

The pixel values of the 6 x 6 edge detected image can be obtained and substituted into the mif file that

represents the ROM modules for X and Y pixels respectively. The mif files for X and Y pixels are shown in

Figure 7 and 8, respectively.

Figure 7: ROM of X pixel Figure 8: ROM of Y pixel

Once the values of X and Y pixels are pre-loaded into the ROM modules, the simulation can be executed

to observe the operation of Hough Transform onto the pre-loaded pixel values of X and Y respectively.

Ravindran et al., Evolution in Electrical and Electronic Engineering Vol. 4 No. 1 (2023) p. 589-596

594

Figure 9: Simulation result of implementing the Hough Transform on the 6x6 pixel image

As shown in Figure 9, values of θ are in the intervals of five units and is declared as ThetaD in the

testbench. The resulting value of substituting the value of θ into the equations sin(θ) and cos(θ) can be

observed in the parameter SinOut and CosOut respectively. The result shows the state at which the value

of θ is 60. When these values are substituted into the equation, the Sine operation will produce a value of

0.86603 while the Cosine operation will produce a value of 0.5 which are floating numbers. In hardware

design, floating numbers are difficult to be processed because they require a more complex representation

than integers. Floating point numbers require more sophisticated hardware to manipulate them [9]. Hence,

the value is rounded. The round number is then normalized in the range of -127 to 128 (8-bit signed integer).

Based on this representation, the value obtained for Sine and Cosine can be obtained as 110d and 64d

respectively. By conducting manual mathematical operation, the resulting value that should be obtained in

the output CosOut and SinOut can be verified.

CosOut = cos (
60×𝜋

180
) × 127 (Eq.2)

 CosOut ≈ 64

SinOut = sin (
60×𝜋

180
) × 127 (Eq.3)

 SinOut ≈ 110

With the obtained value of CosOut and SinOut, values of CosOut, SinOut, X_Pixel and Y_Pixel can be

substituted into Equation (1). By assuming X_Pixel = 3, and Y_Pixel =1, Therefore,

𝜌 = 3(64) + 1(110)

= 302

Based on the value obtained, it can be deduced that the same value of ρ can be observed at the output

of ‘Rho’ in Figure 9.

The execution time of the Hough Transform onto a 6 x 6 image in the proposed design is approximately

25.93 µs. For comparison, Hough Transform can be applied in the software environment of MATLAB to

the same 6 x 6 image to obtain the time taken to execute the process. With the implementation of ‘tic’ and

‘toc’ in MATLAB, the time taken to execute a specific line of code can be obtained [10]. Once the image is

loaded into MATLAB, the code can be executed to obtain the execution time of the software. In the

MATLAB, it can be observed that the time taken to obtain the results of Hough Transform in is 2448 µs.

From the measurement, it can be observed that the execution time is improved by 94 times for hardware

implementation as compared to software.

Ravindran et al., Evolution in Electrical and Electronic Engineering Vol. 4 No. 1 (2023) p. 589-596

595

4. Conclusion

In conclusion, a hardware implementation of Hough Transform for straight line detection using an

FPGA has the potential to significantly improve the efficiency and convenience of line recognition services

in a variety of applications. By implementing the algorithm on an FPGA, it can be considered that the

system can offer a better performance spectrum compared to software implementation. The execution time

of the FPGA to execute instructions are faster than general purpose processor since FPGA’s can operate at

a very high speed especially in cases of applications that require fast processing or real-time performance.

Other than that, the system can be utilized in real-time processing due to its low power consumption since

they consume relatively low power for their operation. With the base line detection algorithm such as Hough

Transform involved, the system can be upgraded to process real-time image processing with ease due to

their customization feature to meet specific requirements and ensuring that the system is tailored to the

needs of the particular line detecting applications.

Acknowledgement

The authors would like to thank the Faculty of Electrical and Electronic Engineering, Universiti Tun

Hussein Onn Malaysia for its support.

References

[1] F. Arena, G. Pau, and A. Severino, “An Overview on the Current Status and Future Perspectives of

Smart Cars,” Infrastructures, vol. 5, no. 7. MDPI Multidisciplinary Digital Publishing Institute, Jun.

30, 2020. doi: 10.3390/infrastructures5070053.

[2] Z. Zhang and X. Ma, “Lane Recognition Algorithm Using the Hough Transform Based on

Complicated Conditions,” Journal of Computer and Communications, vol. 07, no. 11, pp. 65–75,

2019, doi: 10.4236/jcc.2019.711005.

[3] A. Shehata, S. Mohammad, M. Ehab Ragab, A. Shehata Hassanein, and M. Sameer, “A Survey on

Hough Transform, Theory, Techniques and Applications.” [Online]. Available:

https://www.researchgate.net/publication/272195556

[4] P. C. J. Otermans, A. Parton, and A. J. Szameitat, “The working memory costs of a central attentional

bottleneck in multitasking,” Psychol Res, vol. 86, no. 6, pp. 1774–1791, Sep. 2022, doi:

10.1007/s00426-021-01615-1.

[5] “FPGA vs. Microcontroller | What is the Difference?” https://www.mclpcb.com/blog/fpga-vs-

microcontroller/ (accessed Apr. 09, 2022).

[6] “FPGA vs Microcontroller - Advantages of Using An FPGA.” https://duotechservices.com/fpga-vs-

microcontroller-advantages-of-using-fpga (accessed Apr. 09, 2022).

[7] C. Chen, “Design of image recognition system based on FPGA,” in 2022 7th International

Conference on Intelligent Computing and Signal Processing, ICSP 2022, 2022, pp. 1924–1928. doi:

10.1109/ICSP54964.2022.9778604.

[8] I. Corporation, “Embedded Memory (RAM: 1-PORT, RAM: 2-PORT, ROM: 1-PORT, and ROM:

2-PORT) User Guide; Embedded Memory (RAM: 1-PORT, RAM: 2-PORT, ROM: 1-PORT, and

ROM: 2-PORT) User Guide.”

Ravindran et al., Evolution in Electrical and Electronic Engineering Vol. 4 No. 1 (2023) p. 589-596

596

[9] G. Mohana Durga and D. Bhavani, “Floating Point Addition, Subtraction and Multiplication on

FPGA,” International Journal of Scientific Development and Research, vol. 3, no. 7, 2018, [Online].

Available: www.ijsdr.org

[10] “Start stopwatch timer - MATLAB tic.” https://www.mathworks.com/help/matlab/ref/tic.html

(accessed Jan. 29, 2023).

