
 

Enhanced Knowledge in Sciences and Technology Vol. 3 No. 1 (2023) 057-063 
© Universiti Tun Hussein Onn Malaysia Publisher’s Office 

 

EKST 
 

Homepage: http://publisher.uthm.edu.my/periodicals/index.php/ekst 
e-ISSN : 2773-6385 

 

*Corresponding author: fazlina@uthm.edu.my  
2023 UTHM Publisher. All rights reserved.  
publisher.uthm.edu.my/periodicals/index.php/ekst 

 

 Solving MHD Flow over a Shrinking Wedges 

Using Shooting Technique 
 

Nur Hazimah Akiruddin1, Fazlina Aman2* 
 
1Cuckoo International (MAL) Sdn. Bhd.,  

16th Floor, Menara Bangkok Bank, Laman Sentral Berjaya,   

No.105, Jalan Ampang, 50450 Kuala Lumpur, MALAYSIA 

2Department of Mathematics and Statistics,  

Faculty of Applied Sciences and Technology, 

Universiti Tun Hussein Onn Malaysia (Pagoh Campus),  

84600 Pagoh, Muar, Johor, MALAYSIA. 

 

*Corresponding Author Designation 

 
DOI: https://doi.org/10.30880/ekst.2023.03.01.007 

Received 15 January 2023; Accepted 9 May 2023; Available online 3 August 2023 

 

Abstract: The study investigates MHD flow over a shrinking wedge using 

shooting technique. A similarity transformation is used to transform the governing 

partial differential equations of the flow and heat transfer into a system of ordinary 

differential equations. These equations are then solved numerically using shooting 

technique with the Runge-Kutta Fehlberg method in Maple software. The issues 

are quantitatively addressed in this study. The findings are compared to those 

obtained by previous researchers. For the shrinking case, the existence of the 

solution depends on the shrinking strength, λ and the angle of the wedge, Ω. The 

range of λ (for which the solution exists) increases as the angle of the wedge, Ω 

increases. 
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1. Introduction 

Magnetohydrodynamics (MHD) is the study of the interaction of electrically conducting fluids and 

electromagnetic forces. The combination of hydrodynamics with electromagnetic waves is known as 

MHD. There are many studies on MHD flows toward a stretching sheet. For instance, [1] studied about 

the MHD viscous fluid flow over a stretching sheet and reported an exact solution for the problem. They 

found that the fluid flow and shear stress are greatly affected by partial slip, magnetic parameter and 

mass transfer. There are only a few studies regarding such flows toward a shrinking sheet. They 

extended the work to a shrinking sheet and included the injection or suction effect at the boundary. They 

reported that the velocity decreases as the injection effect is increased, but it increases as the suction 

strength is increased [2]. 

The stagnation point flow and heat transfer over a nonlinear shrinking sheet with slip effects has 

been studied by [3]. Meanwhile, [4] investigated the heat transfer characteristics on MHD Powell-
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Eyring fluid flow across a shrinking wedge with non-uniform heat source/sink. The curves of velocity 

reduce when the shrinking parameter, magnetic field parameter, and material fluid parameter are 

increased. The heat transfer performance is also influenced by non-uniform heat source/sink factors. 

Furthermore, [5] studied the flow over a shrinking sheet containing hybrid nanoparticles with nonlinear 

thermal radiation and magnetohydrodynamic effects. It thickens the thermal barrier layer and slows the 

rate of heat transfer. However, as the Lorentz force grows stronger, increasing the magnetic parameter 

causes the friction factor to rise, which immediately enhances the efficiency of heat transfer. The 

solutions for the shrinking sheet must also be produced with sufficient suction strength. The first 

solution is reported as stable and therefore physically trustworthy over the long term according to the 

temporal stability study, whereas the second solution is unstable. 

As a result, the purpose of this research is to identify an alternative way to solve the MHD flow 

problem across contracting wedges. The problem is quantitatively explored using the shooting strategy 

in Maple software with Runge-Kutta Fehlberg (RKF45) technique. 

2. Methodology  

 

Figure 1: Physical model and coordinate system for shrinking wedge. 

Figure 1 illustrates the physical model and coordinate system for the shrinking wedge where x and 

y are respectively the Cartesian coordinate measured along the surface, while u and v are the velocity 

component along the Cartesian coordinate x and y respectively [1]. Assumed that the velocity of the 

shrinking wedge is 𝑢𝑤(𝑥) = 𝑈𝑤𝑥𝑚 , where 𝑈𝑤  < 0 corresponds to shrinking where 𝑚  and 𝑈∞  are 

positive constants [6]. In the positive direction of the 𝑦-axis, a variable magnetic field of intensity 𝐵(𝑥) 

is applied. The induced magnetic field is assumed to be negligible and therefore is not taken into 

consideration.  is the Hatree pressure gradient parameter which corresponds to 𝛽 = 𝛺/𝜋 for a total 

angle 𝛺 of the wedge [1]. 0 ≤ 𝑚 ≤ 1 with 𝑚 = 0 for the boundary-layer flow over a stationary flat plate 

(Blasius problem) and 𝑚 = 1 for the flow near the stagnation point on an infinite wall. 
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while the boundary conditions are: 

𝑣 = 𝑣𝑤, 𝑢 = 𝑢𝑤(𝑥), 𝑇 = 𝑇𝑤  at  𝑦 = 0,

𝑢 → 𝑢𝑒(𝑥), 𝑇 = 𝑇∞  as  𝑦 → ∞, 𝐸𝑞. 4
 

where 𝑣 is kinematic viscosity, 𝑇 is the fluid temperature, 𝑇𝑤 is the uniform surface temperature, 𝜎 is 

the electrical conductivity, 𝛼 is the thermal diffusivity of the fluid, 𝜌 is the fluid density and 𝑦𝑤(𝑥) is 

the mass flux velocity with 𝑣𝑤(𝑥)  < 0 for suction and 𝑣𝑤(𝑥) > 0 for injection. 

The similarity variables which are: 

𝜓 = √
2𝜐𝑥𝑢𝑒

1 + 𝑚
𝑓(𝜂), 𝜂 = √

(1 + 𝑚)𝑢𝑒(𝑥)

2𝜐𝑥
𝑦, 𝜃(𝜂) =

𝑇 − 𝑇∞

𝑇𝑤 − 𝑇∞
, 𝐸𝑞. 5 

 

where 𝜓 is the stream function, which is defined as 𝑢 = 𝜕𝜓/𝜕𝑦 and 𝑣 = −𝜕𝜓/𝜕𝑥 which satisfy the 

continuity Eq. 1 and are obtained as: 

𝜓 = 𝑢𝑒(𝑥)𝑓′(𝜂), 𝑣 = −√
(1 + 𝑚)𝜐𝑢𝑒(𝑥)

2𝑥
[𝑓(𝜂) +

𝑚 − 1

𝑚 + 1
𝜂𝑓′(𝜂)] , 𝐸𝑞. 6 

where prime denotes differentiation with respect to 𝜂. At the boundary where 𝜂 = 0, the transpiration 

rate is given by 

𝑣𝑤 = −√
(1 + 𝑚)𝜐𝑢𝑒(𝑥)

2𝑥
𝑠, 𝐸𝑞. 7 

where 𝑠 = 𝑓(0) , a constant parameter with 𝑠 > 0  for suction and 𝑠 < 0  for injection. Similarity 

solution can be obtained when all the parameters are constant. We take 𝐵(𝑥) = 𝐵0𝑥𝑚−1/2 , where 𝐵0 

is a positive constant [7]. Substitute Eq. 5 and Eq. 6 into Eq. 2 and Eq. 3 to obtain the ordinary 

differential equations as follows:  

  

𝑓′′′ + 𝑓𝑓′′ + 𝛽(1 − 𝑓′2) + 𝑀2(1 − 𝑓′) = 0, 𝐸𝑞. 8 

and  

1

𝑃𝑟
𝜃′′ + 𝑓𝜃′ = 0, 𝐸𝑞. 9 

which is subject to the boundary conditions: 

𝑓(0) = 𝑠, 𝑓′(0) = 𝜆, 𝜃(0) = 1,

 𝑓′(𝜂) → 1, 𝜃(𝜂) → 0 𝑎𝑠  𝜂 → ∞, 𝐸𝑞. 10
 

where 𝜆 is the shrinking parameter, 𝛽 is the pressure gradient parameter, 𝑀 is the magnetic parameter 

(Hartmann number), 𝑃𝑟 is the Prandtl number and 𝑠 is the suction or injection parameter, which are 

defined as: 

𝜆 =
𝑈𝑤

𝑈∞
, 𝛽 =

2𝑚

𝑚 + 1
, 𝑀 = √

2𝜎

(𝑚 + 1)𝜌𝑈∞
𝐵0, 𝑃𝑟 =

𝜐

𝛼
, 𝐸𝑞. 11 
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where 𝜆 < 0 is for shrinking case. Magnetic field is absent, so 𝑀 = 0. When 𝛽 = 0 and 𝛽 = 1, the Eq. 

8 reduces to the classical Blasius equation and Hiemenz equation respectively. There are two physical 

quantities of interest in this study, which are skin friction coefficient 𝐶𝑓 and the local Nusselt number, 

𝑁𝑢𝑥 which can be expressed as: 

𝐶𝑓 =
𝜏𝑤

𝜌𝑢𝑒
2(𝑥)

, 𝑁𝑢𝑥 =
𝑥𝑞𝑤

𝑘(𝑇𝑤 − 𝑇∞)
, 𝐸𝑞. 12 

where 𝜏𝑤 is the wall shear stress along the shrinking surface and 𝑞𝑤 is the surface heat flux, which are 

defined as: 

𝜏𝑤 = 𝜇 (
𝜕𝑢

𝜕𝑦
)

𝑦=0

, 𝑞𝑤 = −𝑘 (
𝜕𝑇

𝜕𝑦
)

𝑦=0

. 𝐸𝑞. 13 

Substituting Eq. 6 into Eq. 13 to obtain 

𝑅𝑒𝑥

1
2𝐶𝑓 = (

1 + 𝑚

2
)

1
2

𝑓′′(0), 𝑅𝑒𝑥

−
1
2𝑁𝑢𝑥 = − (

1 + 𝑚

2
)

1
2

𝜃′(0), 𝐸𝑞. 14 

where 𝑅𝑒𝑥 = 𝑢𝑒(𝑥)𝑥/𝜐 is the local Reynolds number. 

3. Results and Discussion 

The results are achieved by using shooting method with Runge-Kutta Fehlberg (RFK45) in Maple 

and the analysis of the results are presented in the table and graphs. 

Table 1: The outcome of skin friction coefficient, 𝒇′′(𝟎) when 𝝀 =  𝟎, 𝒔 =  𝟎 and 𝑴 =  𝟎 for 

different values of 𝜷 

𝛽 𝑀 Skin friction coefficient, 𝑓′′(0)  

  Awaludin et al. [8] Present study 

0 0 0.469600 0.469600 

0.5 0 0.927680 0.927680 

0.7 0 1.059808 1.059808 

 

From Table 1, it can be seen that the result shows a good agreement. The result of Nusselt number also 

can be obtained as shown in Table 2 below.  

Table 2: The outcome of the Nusselt number, 𝑵𝒖𝒙 when 𝝀 =  𝟎, 𝒔 =  𝟎 and 𝑴 =  𝟎 for different 

values of 𝜷 

 

 

 

 

3.1 The effect on velocity profiles  

Figures below illustrate the velocity profiles, 𝑓′(𝜂) for different values of shrinking parameter  𝜆 

when 𝑠 = 1 and 𝑀 = 0.2 with Hatree pressure gradient parameter 𝛽 = 0.1 and 𝛽 = 0.33 as in Figure 

𝛽 𝑀 Nusselt number −𝜃′′(0) 

0 0 -0.469600 

0.5 0 -0.538978 

0.7 0 -0.553660 

1 0 -0.570465 
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2 and Figure 3 respectively. Based on these figures, the infinity boundary conditions                                

(𝑓 → 1 and 𝜃 → 0 as 𝜂 → ∞) are satisfied asymptotically which support the validity of the numerical 

results obtained. The increases in 𝜆 contributes to the increment of 𝑓 ′() as shown in Figure 2 because 

of the Lorentz force grows stronger, increasing the magnetic parameter causes the friction factor to rise, 

which immediately enhances the efficiency of heat transfer [9], while the boundary layer thickness is 

high and decreases the value of 𝜆 contributes to the increment of 𝑓 ′() in Figure 3. 

 

Figure 2: The velocity profiles for different values of 𝝀 when 𝒔 = 𝟏, 𝜷 = 𝟎. 𝟏 and 𝑴 = 𝟎. 𝟐 

 
 

Figure 3: The velocity profiles for different values of 𝝀 when 𝒔 = 𝟏, 𝜷 = 𝟎. 𝟑𝟑 and 𝑴 = 𝟎. 𝟐 

 

𝜆 = −1.30, −1.35, −1.39 

𝜆 = −1.40, −1.50, −1.60 
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3.2 The effect on temperature profiles 

Figures below show temperature profiles for different values of 𝜆  when 𝑠 = 1, 𝑀 = 0.2 and       

Pr = 1 with 𝛽 = 0.1 and 𝛽 = 0.33 as in Figure 4 and Figure 5 respectively. Based on these figures, the 

infinity boundary conditions (𝑓 → 1 and 𝜃 → 0 as 𝜂 → ∞) are satisfied asymptotically which support 

the validity of the numerical results obtained. Figure 4 shows the temperature profile increases as the 

values of 𝜆 decrease. This is because of the viscous dissipation tends to enhance temperature [10], while 

Figure 5 shows the boundary layer thickness is high and the temperature profile decreases as the values 

of 𝜆 increase. 

 

Figure 4: The temperature profiles for different values of 𝝀 when 𝒔 = 𝟏, 𝜷 = 𝟎. 𝟏, 

 𝑴 = 𝟎. 𝟐 and 𝐏𝐫 = 𝟏 

 

Figure 5: The temperature profiles for different values of 𝝀 when 𝒔 = 𝟏, 𝜷 = 𝟎. 𝟑𝟑, 

 𝑴 = 𝟎. 𝟐 and 𝐏𝐫 = 𝟏 

 

𝜆 = −1.30, −1.35, −1.39 

𝜆 = −1.40, −1.50, −1.60 
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4. Conclusion 

In conclusion, this study examined the steady two-dimensional MHD boundary layer flow and heat 

transfer of an incompressible and electrically conducting fluid over a shrinking wedge. The Runge-

Kutta-Fehlberg (RFK45) in Maple software has been used to calculate the numerical findings. The 

shrinking strength and wedge angle are both important factors in determining whether a solution exists 

for the shrinking situation. As the wedge's angle rises, the range of (for which the solution exists) 

expands. For the effects of all the parameters involved, discussions on the skin friction coefficient and 

the local Nusselt number have been conducted. 
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