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A chaotic system is a deterministic nonlinear dynamic system but 
expresses unpredictable and random output. It is sensitive to initial 
conditions, where a slight change in input can produce significantly 
different outcomes. This paper describes a logistic growth model based 
on an optimization matching scheme to predict the solution of chaotic 
systems. Similarities and contradictions between chaotic systems and 
nonlinear systems are observed. Then, a loss function, which measures 
the differences between the chaotic system and the logistic growth 
model, is defined. Using a gradient method, the parameter in the logistic 
growth model is updated iteratively. Once convergence is achieved, the 
differences are minimized, and the optimal parameter is obtained. 
Hence, the solution of the logistic growth model with the optimal 
parameter approximates the solution of chaotic systems. For 
illustration, a one-dimensional two-parameter sin-cos (1DTPSC) system 
in encryption, a two-dimensional Van der Pol oscillator and a three-
dimensional Chua’s circuits are studied. These systems present chaotic 
behaviour for certain initial conditions and model parameters. The 
simulation results showed the accuracy of the logistic growth model in 
predicting the chaotic solutions. In conclusion, the applicability of the 
logistic growth model with an optimization matching scheme for 
handling chaotic systems is highly demonstrated. 
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1. Introduction 

Mathematical modelling is a process that applies a mathematical model to describe real-world problems for 
making decisions, predictions or providing insights [1]. Dynamical systems have characteristics like nonlinear 
behaviour and changing over time [2]. Thus, dynamical systems are suited to formulate real-world problems in a 
mathematical model [3]. The nonlinearity of a dynamic system raises the issue of the existence of a solution, and 
even the chaotic behaviour of a nonlinear dynamic system renders its output unpredictable in the future. Hence, 
efficient computational methods have been developed to solve such nonlinear and chaotic systems.  

Numerical methods, such as Euler and Runge-Kutta fourth-order methods, are applied to find the solution of 
nonlinear dynamical systems. The numerical solution is not the exact solution, but it can approximate the 
solution of a nonlinear dynamic system within an acceptable tolerance of numerical error [4]. A chaotic system 
is a nonlinear, deterministic dynamic system, but its output behaviour follows an irregular, unique solution. 
Since chaotic systems occupy randomness and disordered characteristics, thus the chaotic system is unstable, 
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and the system output is hard to measure [5]. Moreover, the chaotic system is sensitive to an initial condition, 
where a slight change in the initial condition will bring the effect of a significant change in the system output [6]. 

Therefore, finding the solution to the chaotic systems motivates us to apply a logistic growth model based 
on an optimization matching scheme in studying chaotic systems. For this purpose, the differences between the 
chaotic system and the logistic growth model are measured. The unknown parameter in the logistic growth 
model is updated optimally using the gradient method to minimize the differences. Hence, the accuracy of the 
proposed method is guaranteed, and the optimal solution of the logistic growth model approximates the solution 
of the chaotic system at the end of convergence. 

In addition, three objectives of the study are established. First, to identify the characteristics of chaotic 
systems so that the similarities and contradictions between chaotic systems and nonlinear systems are known. 
Second, to determine the solution of chaotic systems by solving the logistic growth model through the 
optimization matching scheme. Third, to improve the prediction solution by applying the previous actual 
solution to the analytical solution of the logistic growth model. 

2. Materials and Methods 

 Consider a general continuous-time dynamical system [7] described by the differential equation, 

( )
dx

f x
dt

 , (1) 

where nx  is the n-dimensional state variable of the system, dx/dt is the rate of change of the system over 

time t, and : n nf    is the system function.  

The discrete-time dynamical system to (1) is defined by 

1 ( )k kx f x  , (2) 

where n

kx   is the current state of the system, and 1

n

kx    is the next state of the system with k represents 

the time step.  
Suppose the initial value of the state is 

0 0( )x t x , the solution of the systems (1) and (2) can be obtained 

numerically. However, these systems are nonlinear and sensitive to initial conditions, and their output is 
unpredictable and presents random behaviour, although there is no attending random noise in the system. 
These systems are known as chaotic systems. Hence, obtaining the solution of these systems is challenging.   

2.1 Logistic Growth Model 

Consider a logistic growth model in a differential equation [8], which is given as follows, 


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K

x
kx
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1 , (3) 

where x is the population, k is known as the growth rate and K is the carrying capacity. While, dx/dt is the rate of 
changes over time t, and the initial population is 0 0( )x t x  at the initial time 0t  with 0t t .  

Equation (3) can be written in a separable equation form, 
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Then, do the partial fraction and integrating both sides of (4) to obtain  

dtkdx
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Hence, the analytical solution to the model (3) is expressed by 
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 . (6) 

2.2 Optimization matching scheme 

Now, define an optimization problem [9] as follows,  

)()()( T pRrprpJ sse  , (7) 

where  
)()()( xKpxxfpr                                                                                         (8) 

is a model error, sseJ is the loss function, which represents the differences between the chaotic system and the 

logistic growth model, and R is the weight. Consider the first-order derivative of (7) with respect to p, that is, 
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   )()( xKpxxfRxKx
p

J sse 



. (9) 

This derivative is the gradient to the loss function 
sseJ . Then, the parameter p can be updated by using the 

following recursion equation, 
( )

( 1) ( )

i

i i sseJ
p p

p
  

   
 

 (10) 

with the given initial value 
0(0)p p  and step-size  . Equation (10) is known as gradient descent method. 

 Assume that *p is the optimal parameter, which minimizes the loss function 
sseJ in (7). When the 

convergence is achieved, we have * ( 1) ( )i ip p p  , where the optimal parameter *p  is estimated satisfactorily. 

Thus, the analytical solution to the model (3) is given by 
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Here, (11) shall give an approximation to the solution of the chaotic system (1). This approximate solution can 
be written by 
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for 1 ii ttt  during the calculation procedure. 

Furthermore, to improve the accuracy of the prediction, we modify (12) as follows, 
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for 1 ii ttt , i = 0, 1, …, n, where y is the data-driven solution from a chaotic dynamic system. On this basis, the 

optimization matching (OM) scheme is formed. 

3. Results and Discussion 

This section examines three chaotic systems: one-dimensional image encryption, a two-dimensional Van der Pol 
oscillator, and a three-dimensional Chua circuit. An appropriate logistic growth model is proposed to handle 
these chaotic systems using the proposed OM scheme.   

3.1 Chaotic image encryption 

Consider a chaotic system, which is known as one-dimensional two-parameter sin-cos (1D-TPSC) encryption 
system [10], given as follows, 

1 sin( (1 ) cos( 1)),n n nx x x        (14) 

where 
 
and  

 
are parameters with 

 
> 0 and  > 0, whereas x0 is the initial value and x has values ranging from 

  to . The graphical result for (14) is shown in Figure 1 with 
 
= 8.8 and  = 3.6 and x0 = 0.98461532023. 

Table 1 shows the simulation results for the 1D-TPSC system by applying the OM scheme. The initial 
parameter p0 = 0.4 is employed in the logistic growth model before using the OM scheme, and the final 
parameter p = 0.0324 is the optimal parameter after convergence is achieved. Thus, the initial logistic growth 
model is given by  

 xx
dt

dx
 3021.34.0  (15) 

with the exact solution 
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Table 1 Simulation result for single model parameter 

Initial 
Parameter 

Final 
Parameter 

Iteration 
Number 

Elapsed Time 
(s) 

Loss 
Function 

Output 
MSE 

0.4 0.032365 10 0.026813 2.1232 2.7498 
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While the final logistic growth model is 

 xx
dt

dx
 3021.30324.0 , (17) 

and the exact solution is  
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with the initial value x(0) = 0.9846. To improve the prediction solution, we modify the exact solution as follows, 
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Figure 2 shows the prediction solution using the final logistic growth model (17). It reveals that the solution 
curve does not fit closely to the solution of the system since the system presents chaotic characteristics. The 
prediction solution given by the improved solution (19), as shown in Figure 3, fits closely to the system solution 
and the chaotic characteristic is tracked accurately within an accepted tolerance. The prediction error using the 
improved solution is shown in Figure 4, where this prediction error is obviously smaller than the prediction 
error applying the final model. Hence, the prediction solution (19) is satisfactorily accepted with the output MSE 
of 4.7516103. 
 

  

Fig. 1 Solution of 1D-TPSC system Fig. 2 Prediction solution with final model                   
and 1D-TPSC system solution 

 

  

Fig. 3 Prediction solution with improved model            
and 1D-TPSC system solution 

Fig. 4 Prediction error using improved final model 

3.2 Van der Pol Oscillator 

Consider an equation of Van der Pol oscillator [11], given below,  
2

2

2
( 1) cos( ),

d x dx
x x t

dtdt
       (20) 
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where x is the solution of the oscillator, 
 
> 0nd  > 0 are the model parameters and  is the angular frequency 

of the external periodic force. This oscillator expresses the chaotic behaviour for 
 
= 5,  = 5 and  = 2.466. The 

Van der Pol equation (20) can be written by  

1

2

dx
x

dt


                                                                                                            
(21) 

   

22

1 2 1( 1) cos( )
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x x x t
dt

      

                                                             
(22)  

The initial values are 6.1)0(1 x  and 8.0)0(2 x . Figure 5 shows the solution of the Van der Pol oscillator with 

chaotic motion. 
Table 2 shows the simulation results from using two logistic differential equations after applying the OM 

scheme. The initial parameters p1 = 0.2 and p2 = 0.1 are used in the logistic differential equation before using the 
OM scheme, and the final parameter p1 = -3.3005 and p2 = 0.4246 are the optimal parameters after convergence 
is achieved. These initial logistic differential equations are given by 
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1 10.2 (2.1322 )
dx

x x
dt
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2
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x x
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with the exact solutions, 
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and the initial conditions are 6.1)0(1 x  and 8.0)0(2 x . The final model of logistic differential equations has 

the exact solution, 
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Table 2 Simulation result for two model parameters 

Initial Parameter Final Parameter 
Iteration 
Number 

Elapsed Time 
(s) 

Loss Function Output MSE 

(0.2, 0.1) (-3.3005, 0.4246) 52 0.759544 31.976 1.9240 
 

Figure 6 shows the prediction solution of final models (25)-(26) and the Van der Pol system solution. The 
system solution exhibits chaotic behaviour, making it difficult to predict accurately. Thus, the predicted curves 
given by the final solutions (27)-(28) represent the best-fit solution for the system solution. To improve the 
accuracy of prediction, we modify the exact solution to be  
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The prediction solutions using the improved solutions (29)-(30) are shown in Figure 7. The trend of the 
system solution is satisfactorily tracked, and the prediction errors are shown in Figure 8. The output MSE of 
using these improved solutions is 0.012038.  



Enhanced Knowledge in Sciences and Technology Vol. 4 No. 1 (2024) p. 32-40 37 

 

 

  

  

Fig. 7 Prediction solution with two improved models 
and Van der Pol system solution 

Fig. 8 Prediction error using two improved models 

3.3 Chua’s Circuit 

Consider a Chua’s circuit, which is a three-dimensional chaotic system [12], as follows 

1

2 1 1( ( )),
dx

a x x f x
dt

    (31) 

2

1 2 3 ,
dx

x x x
dt

         (32) 

3

2

dx
bx

dt
   (33) 

 1 1 1 0 1 1 1( ) 0.5( ) 1 1f x m x m m x x       (34) 

 

where a, b, m0, m1 are model parameters with the following values a = 15.6, b = 25.58, m0 = -8/7, m1 = -5/7. The 
initial conditions are x1(0) = 0.9, x2(0) = 0.01 and x3(0) = 0.5 for 0 < t < 30. Figure 9 shows the dynamic behaviour 
of Chua’s circuit.  

Table 3 shows the simulation results for using three logistic differential equations to predict the solution of 
Chua’s circuit in (31)-(33). The initial parameters p1 = 0.8, p2 = 0.5, p3 = 0.2 are used in the logistic differential 
equations before running the OM scheme, and the final parameters p1 = -345.872, p2 = -19.002, p3 = -140.873 are 
the optimal parameters after convergence is achieved. These initial models are given by 

1

1 10.8 (2.3243 )
dx

x x
dt

  , (35) 

2

2 20.5 (0.4323 )
dx

x x
dt

  , (36) 

  

Fig. 5 Solution of Van der Pol Oscillator Fig. 6 Prediction solution with two final models and 
Van der Pol system solution 
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3

3 30.2 (3.6915 )
dx

x x
dt

  . (37) 

The exact solutions for these initial models are provided as follows, 
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Table 3 Simulation result for three model parameters 

Initial Parameter Final Parameter 
Iteration 
Number 

Elapsed 
Time (s) 

Loss 
Function 

Output 
MSE 

(0.8, 0.5, 0.21) (-345.872, -19.002, -140.873) 961 11.7392 1878.0 2.6667 
 
The final models have the following exact solutions, 
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Figure 10 shows the prediction solution given by the exact solution (41)-(43). It is noticed that the predicted 
curves represent the best-fit solution for the system solution. 
 

  

Fig. 9 Solution of Chua’s circuit system 

 

Fig. 10 Prediction solution with three final models and 
Chua’s circuit system solution 

 To improve the accuracy of prediction, we modify the exact solution as below,  
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Figure 11 shows the prediction solution using the improved solutions (44)-(46). The prediction error is shown 
in Figure 12. Using these improved solutions gives the output MSE of 6.7690103. The chaotic attractors for 
Chua’s circuit are shown in Figure 13.  
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Fig. 11 Prediction solution with three improved 
models and Chua’s circuit system solution 

Fig. 12 Prediction error using three improved models 

 
 

Fig. 13 Chaotic attractors for Chua’s circuit. 

4. Conclusion 

This paper discussed the logistic growth model with the optimization matching scheme to predict the solution of 
chaotic systems. During the iterative calculation, the loss function was minimized once the convergence was 
achieved, and the solution of the logistic growth model would approximate the solution of chaotic systems. For 
illustration, three chaotic systems, namely the 1D-TPSC encryption system, Van der Pol oscillator and Chua’s 
circuit, were studied. The simulation results showed satisfactory solutions in predicting these chaotic systems, 
where the prediction accuracy was verified through the loss function and the output MSE. In conclusion, the 
optimization matching scheme demonstrates the efficiency in handling the solution of chaotic systems. For 
future research, it is recommended to explore the application of the proposed method for other more 
complicated chaotic systems.     
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