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Abstract: In this study, the solitary wave modulation in an inviscid fluid filled in an 

elastic tube with variable radius is studied. The artery is considered as a thin walled 

and pre-stressed elastic tube with variable radius and the blood is treated as an inviscid 

fluid. Reductive perturbation method is utilized in the long wave approximation and 

the various orders of differential equations are obtained. The differential equations 

are then solved and reduced to nonlinear evolution equation which is the variable 

coefficient Nonlinear Schrodinger (NLS) equation. After looking a progressive wave 

type of solution to the nonlinear evolution equation, the graphical outputs are studied 

and discussed. The results shown that the wave maintained its symmetrical bell-

shaped curve propagates to the right as time going. The amplitude of wave remain 

unchanged when it modulated over the time. This is due to no resistance for blood 

flowing as the blood in this study is considered as an inviscid fluid. 

 

 

Keywords: Wave   Modulation,  Nonlinear  Schrodinger   Equation  With  Variable 

Coefficient, Inviscid Fluid, Thin Wall Elastic Tube With Variable Cross-Section  

 

1. Introduction 

In general, blood flow refers to the movement of blood through a vessel, tissue or organ. Blood flow is 

initiated by the contraction of the ventricles of the heart. An artery acts as a blood vessel which carries 

blood from the heart to other parts of the body. Blood movement in arteries is led by an unsteady flow 

phenomena. Under varying hemodynamic conditions, the arteries are living organs that can adapt to 

and change. In order to develop mathematical model for blood flow in artery, various methods have 

been applied in the past decades. Porenta, and Young [1] developed a mathematical model of arterial 

blood flow by using finite-element method. The model of the equations are altered into a system of 

algebraic equations that can be solved on a high speed digital computer to yield volume rate of flow as 

functions of time and arterial position. Besides, Demiray [2] has examined the propagation of nonlinear 

waves by assuming the arteries as a thin walled, prestressed thin elastic tube and the blood as an inviscid 

fluid. The propagation of waves was studied by utilizing the extended Poincare’-Lighthill-Kuo (PLK) 

perturbation method. It has been observed that the head-on collision of two solitary waves is elastic and 
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they maintain the initial properties after the collision. On the other hand, Demiray and Bakirtas [3] have 

studied the propagation of weakly non-linear waves in a inviscid fluid filled elastic tube by treating the 

artery as a tapered,thin walled, long and circularly conical prestressed elastic tube .They obtained the 

Korteweg-de Vries equation with a variable coefficient as the governing equation for their mathematical 

model which admits a solitary wave type solution with changing wave speed. Referring to the previous 

studies, most studies considered the artery as circularly conical, tapered and prestressed elastic tube 

rather than the artery as with variable radius.Therefore, in this study, the modulation of solitary wave 

is examined by assuming the artery as a prestressed, thin walled, elastic tube with variable radius and 

the blood as an incompressible inviscid fluid. Reductive perturbation method will be applied in this 

study in order to find out the mathematical model for wave modulation in inviscid fluid contained in 

elastic tube with variable radius. 

 

2. Equations of the tube and fluid. 

This section explains the equations of an incompressible inviscid fluid-filled prestressed elastic 

tube. The equations of fluid are given as follow [4]: 

 
𝜕𝑤∗

𝜕𝑡∗
+𝑤∗

𝜕𝑤∗

𝜕𝑧∗
+
1

𝜌𝑓

𝜕𝑃∗

𝜕𝑡∗
= 0, 

Eq. 1 

2
𝜕𝑢∗

𝜕𝑡∗
+ 2𝑤∗ [𝑓∗′ +

𝜕𝑢∗

𝜕𝑧∗
] + (𝑟0 + 𝑓

∗ + 𝑢∗)
𝜕𝑤∗

𝜕𝑧∗
= 0, 

 

 

Eq. 2 

 

w* is the mean of fluid speed, t* is time. z* is a coordinate that located on axis when the changes of 

radius maintain its value, f*(z*) is the function of a variable radius, 𝜌𝑓 the mass density, P* is the mean 

of fluid pressure, 𝑣̅ is the viscosity for fluid flow, u* is the function of displacement of the radius, and r0 

is the initial radius in the coordinate system. The 𝑟𝑓 = 𝑟0 + 𝑓
∗ + 𝑢∗is the final radius after deformation 

occurred. 

 

The equation of motion of elastic tube in the radial direction could be written as follow [4]: 

−
𝜇

𝜆2

𝜕Σ

𝜕𝜆2
+ 𝜇𝑅0 ×

𝜕

𝜕𝑧∗

{
 
 

 
 

(𝑓∗′ +
𝜕𝑢∗

𝜕𝑧∗
)

[1 + (𝑓∗′ +
𝜕𝑢∗

𝜕𝑧∗
)
2

]

1
2

𝜕Σ

𝜕𝜆1

}
 
 

 
 

+
𝑃𝑟
∗

𝐻
(𝑟0 + 𝑓

∗ + 𝑢∗) 

× [1 + (𝑓∗′ +
𝜕𝑢∗

𝜕𝑧∗
)
2

]

1
2

= 𝜌0
𝑅0
𝜆𝑧

𝜕2𝑢∗

𝜕𝑡∗2
, 

 

 

 

 

 

 

 

Eq. 3 

where  

𝑃𝑟
∗ = [1 + (𝑓∗′ +

𝜕𝑢∗

𝜕𝑧∗
)2]

−1/2
× [𝑃∗ + 4𝜇𝑣

(𝑓∗
′
+
𝜕𝑢∗

𝜕𝑧∗
)

(𝑟0+𝑓
∗+𝑢∗)

𝑤∗]. 

 

𝑅0 is the radius of the tube, Σ is the strain energy density function membrane, 𝜇 is the shear modulus of 

the material of the tube, 𝜆𝑧 represents the axial stretch of the tube, 𝜆2 is the circumference of curves, 𝑃𝑟
∗ 

is a force where it is developed from the reaction of the fluid, 𝐻 is the thickness of the tube, and 𝜌0is 

the tube's mass density. Both equations of tube and fluid using the function, 𝑢 and depends on the same 

fast, and slow variables. Fast variables are t and z while slow variables are ξ and τ.  

 

The following non-dimensional quantities are introduced at this stage [4]: 

𝑡∗ = (
𝑅0
𝑐0
) 𝑡, 

𝑧∗ = 𝑅0𝑧, 𝑢∗ = 𝑅0𝑢,  
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𝑚 =
𝑝0𝐻

𝑝𝑓𝑅0
, 

𝑤∗ = 𝑐0𝑤, 𝑓∗ = 𝑅0𝑓, 

𝑟0 = 𝑅0𝜆𝜃 , 𝑃∗ = 𝑝𝑓𝑐0
2𝑝, 

𝑐0
2 =

𝜇𝐻

𝑝𝑓𝑅0
, 

 

 

Eq. 4 

 

By applying Eq. (4) into Eq. (1), (2) and (3) yield 

𝜕𝑤

𝜕𝑡

𝑐0
2

𝑅0
+
𝑐0
2

𝑅0
𝑤(

𝜕𝑤

𝜕𝑧
) +

𝑐0
2

𝑅0

𝜕𝑃

𝜕𝑧
= 0, 

 

2 (
𝜕𝑤∗

𝜕𝑤

𝜕𝑤

𝜕𝑧

𝜕𝑧

𝜕𝑧∗
) + 2𝑤∗ (𝑓∗′ +

𝜕𝑢∗

𝜕𝑢

𝜕𝑢

𝜕𝑧

𝜕𝑧

𝜕𝑧∗
) + (𝑟0 + 𝑓

∗ + 𝑢∗) × (
𝜕𝑤∗

𝜕𝑤

𝜕𝑤

𝜕𝑧

𝜕𝑧

𝜕𝑧∗
) = 0, 

 

𝑝 =
𝑚

𝜆𝑧(𝜆𝜃 + 𝑓 + 𝑢)

𝜕2𝑢

𝜕𝑡2
+

1

𝜆𝑧(𝜆𝜃 + 𝑓 + 𝑢)

𝜕Σ

𝜕𝜆2
−

1

(𝜆𝜃 + 𝑓 + 𝑢)

𝜕

𝜕𝑧
 

×

{
 
 

 
 

𝑓′ +
𝜕𝑢
𝜕𝑧

[1 + (𝑓′ +
𝜕𝑢
𝜕𝑧
)
2

]

1
2

𝜕Σ

𝜕𝜆1

}
 
 

 
 

− 4𝑣
𝑓′ +

𝜕𝑢
𝜕𝑧

(𝜆𝜃 + 𝑓 + 𝑢)
𝑤, 

 

where 𝜆𝜃 is the stretch ratio in the circumferential direction. 

 

 

 

 

 

 

 

 

 

 

 

 

Eq. 5 

3. Nonlinear Wave Modulation 

 

In this section, the amplitude modulation of weakly non-linear waves in a fluid-filled thin elastic 

with a stenosis whose non-dimensional governing equations are given in equation (5) will be studied. 

Considering the dispersion relation of the linearized field equations and the nature of the problem of 

concern, which is a boundary-value problem, the following stretched coordinates is introduced: 

 

𝜉 = 𝜀(𝑧 − 𝜆𝑡), 𝜏 = 𝜀2𝑧, Eq. 6 

where ξ is the wave profile and τ is the space. ε indicates the nonlinearity measurer's weakness with a 

small value and λ is the scale constant to be determined from the solution. 

Since this study has a variable cross-section of tube, the order of ℎ̂ should be first-order, (𝜀), 

where ℎ̂(𝜀, 𝜏) = 𝜀ℎ(𝜏) [4]. The differential relations can be expressed as [4]: 

𝜕

𝜕𝑧
→
𝜕

𝜕𝑧
+ 𝜀

𝜕

𝜕𝜉
+ 𝜀2

𝜕

𝜕𝜏
,

𝜕

𝜕𝑡
→
𝜕

𝜕𝑡
− 𝜀𝜆

𝜕

𝜕𝜉
. 

Eq. 7 

The field quantities 𝑢, 𝑤 and 𝑝 are assumed can be expressed as asymptotic series in the following form 

[4]: 

𝑢 = 𝜀𝑢1 + 𝜀
2𝑢2 + 𝜀

3𝑢3 +⋯  

𝑤 = 𝜀𝑤1 + 𝜀
2𝑤2 + 𝜀

3𝑤3 +⋯  

𝑝 = 𝑝0 + 𝜀𝑝1 + 𝜀
2𝑝2 + 𝜀

3𝑝3 +⋯ Eq. 8 

where u, w, and p are the functions of fast variables and slow variables. 

Introducing the expansions (6) – (8) into the equation (5), the following sets of differential equations 

are obtained. 
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𝑂(𝜀) order equation: 

𝜕𝑤1
𝜕𝑡

+
𝜕𝑝1
𝜕𝑧

= 0,
𝜕𝑢1
𝜕𝑡

+
𝜆𝜃
2

𝜕𝜔1
𝜕𝑧

= 0, 𝑝1 =
𝑚

𝜆𝑧𝜆𝜃

𝜕2𝑢1
𝜕𝑡2

− 𝑎0
𝜕2𝑢1
𝜕𝑧2

+ 𝛽1(𝑢1 + ℎ). 
 

Eq. 9 

𝑂(𝜀2) order equation: 

𝜕𝑤2
𝜕𝑡

+
𝜕𝑝2
𝜕𝑧

− 𝜆
𝜕𝑤1
𝜕𝜉

+
𝜕𝑝1
𝜕𝜉

+ 𝑤1
𝜕𝑤1
𝜕𝑧

= 0, 

𝜕𝑢2
𝜕𝑡

+
𝜆𝜃
2

𝜕𝜔2
𝜕𝑧

− 𝜆
𝜕𝑢1
𝜕𝜉

+
𝜆𝜃
2

𝜕𝜔1
𝜕𝜉

+ 𝜔1
𝜕𝑢1
𝜕𝑧

+
𝑢1
2

𝜕𝜔1
𝜕𝑧

= 0,  

 

𝑝2 =
𝑚

𝜆𝑧𝜆𝜃
(
𝜕2𝑢2
𝜕𝑡2

− 2𝜆
𝜕2𝑢1
𝜕𝑡𝜕𝜉

) −
𝑚

𝜆𝑧𝜆𝜃
2 𝑢1

𝜕2𝑢1
𝜕𝑡2

+ 𝛽2𝑢1
2 + 𝛽1𝑢2 − 𝑎0

𝜕2𝑢2
𝜕𝑧2

− 2𝑎0
𝜕2𝑢1
𝜕𝑧𝜕𝜉

 

+(
𝛼0
𝜆𝜃
− 2𝛼1) 𝑢1

𝜕2𝑢1
𝜕𝑧2

− 𝛼1 (
𝜕𝑢1
𝜕𝑧
)
2

+ [−
𝑚

𝜆𝑧𝜆𝜃
2

𝜕2𝑢1
𝜕𝑡2

+ 2𝛽2𝑢1 + (
𝛼0
𝜆𝜃
− 2𝛼1)

𝜕2𝑢1
𝜕𝑧2

] 

× ℎ(𝜏) + 𝛽2(ℎ)
2. 

 

 

 

 

Eq. 10 

𝑂(𝜀3) order equation: 

𝜕𝑤3
𝜕𝑡

+
𝜕𝑝3
𝜕𝑧

− 𝜆
𝜕𝑤2
𝜕𝜉

+
𝜕𝑝2
𝜕𝜉

+
𝜕𝑝1
𝜕𝜏

+ 𝑤1 (
𝜕𝑤2
𝜕𝑧

+
𝜕𝑤1
𝜕𝜉

) + 𝑤2
𝜕𝑤1
𝜕𝑧

= 0, 

𝜕𝑢3
𝜕𝑡

+
𝜆𝜃
2

𝜕𝜔3
𝜕𝑧

− 𝜆
𝜕𝑢2
𝜕𝜉

+
𝜆𝜃
2

𝜕𝜔2
𝜕𝜉

+ 𝜔1 (
𝜕𝑢2
𝜕𝑧

+
𝜕𝑢1
𝜕𝜉
) +

𝜕𝑢1
𝜕𝑧

𝜔2 +
𝑢1
2
(
𝜕𝜔2
𝜕𝑧

+
𝜕𝜔1
𝜕𝜉

) 

+
𝑢2
2

𝜕𝜔1
𝜕𝑧

+
ℎ(𝜏)

2
(
𝜕𝜔2
𝜕𝑧

+
𝜕𝜔1
𝜕𝜉

) = 0, 

 

𝑝3 =
𝑚

𝜆𝑧𝜆𝜃

𝜕2𝑢3
𝜕𝑡2

− 𝑎0
𝜕2𝑢3
𝜕𝑧2

+ 𝛽1𝑢3 − 2𝜆
𝑚

𝜆𝑧𝜆𝜃

𝜕2𝑢2
𝜕𝑡𝜕𝜉

− 2𝑎0
𝜕2𝑢2
𝜕𝑧𝜕𝜉

 

+(𝜆2
𝛼0
𝜆𝜃𝜆𝑧

− 𝛼0)
𝜕2𝑢1
𝜕𝜉2

+
𝑚

𝜆𝑧𝜆𝜃
2 (2𝜆𝑢1

𝜕2𝑢1
𝜕𝑡𝜕𝜉

− 𝑢1
𝜕2𝑢2
𝜕𝑡2

− 𝑢2
𝜕2𝑢1
𝜕𝑡2

) 

+
𝑚

𝜆𝑧𝜆𝜃
3 𝑢1

2
𝜕2𝑢1
𝜕𝑡2

+ 𝛽3𝑢1
3 + 2𝛽2𝑢1𝑢2 − 2𝑎0

𝜕2𝑢1
𝜕𝑧𝜕𝜏

 

+(
3

2
𝛼0 − 3𝛾1) (

𝜕𝑢1
𝜕𝑧
)
2 𝜕2𝑢1
𝜕𝑧2

+ (
1

𝜆𝜃
𝛼0 − 2𝛼1)(𝑢1

𝜕2𝑢2
𝜕𝑧2

+ 𝑢2
𝜕2𝑢1
𝜕𝑧2

) 

−2𝛼1
𝜕𝑢1
𝜕𝑧

(
𝜕𝑢2
𝜕𝑧

+
𝜕𝑢1
𝜕𝜉
) + 2(−𝛼2 + 2

𝛼1
𝜆𝜃
−
𝛼0

𝜆𝜃
2)𝑢1

2
𝜕2𝑢1
𝜕𝑧2

 

+[
𝑚

𝜆𝑧𝜆𝜃
2 (2𝜆

𝜕2𝑢1
𝜕𝑡𝜕𝜉

−
𝜕2𝑢2
𝜕𝑡2

) + 2𝑢1
𝑚

𝜆𝑧𝜆𝜃
3

𝜕2𝑢1
𝜕𝑡2

+ 3𝛽3𝑢1
2 + 2𝛽2𝑢2   

+(
1

𝜆𝜃
𝛼0 − 2𝛼1)

𝜕2𝑢2
𝜕𝑧2

+ 2(
1

𝜆𝜃
𝛼0 − 2𝛼1)

𝜕2𝑢1
𝜕𝑧𝜕𝜉

+ (−𝛼2 +
𝛼1
𝜆𝜃
) (
𝜕𝑢1
𝜕𝑧
)
2

  

+2𝑢1 (−𝛼2 + 2
𝛼1
𝜆𝜃
−
𝛼0

𝜆𝜃
2)
𝜕2𝑢1
𝜕𝑧2

] ℎ(𝜏) + (−𝛼2 +
𝛼1
𝜆𝜃
) (
𝜕𝑢1
𝜕𝑧
)
2

𝑢1 
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+[
𝑚

𝜆𝑧𝜆𝜃
3

𝜕2𝑢1
𝜕𝑡2

+ 3𝛽3𝑢1 + (−𝛼2 + 2
𝛼1
𝜆𝜃
−
𝛼0

𝜆𝜃
2)
𝜕2𝑢1
𝜕𝑧2

] ℎ2(𝜏) + ℎ3(𝜏)𝛽3. 
 

Eq. 11 

where 𝛼0, 𝛼1, 𝛼2, 𝛽0, … , 𝛽3 and 𝛾1 are defined by     

𝛼0 =
1

𝜆𝜃

𝜕Σ

𝜕𝜆𝑧
, 𝛼1 =

1

2𝜆𝜃

𝜕2Σ

𝜕𝜆𝜃𝜕𝜆𝑧
, 𝛼2 =

1

2𝜆𝜃

𝜕2Σ

𝜕𝜆𝜃𝜕𝜆𝑧
 𝛾1 =

𝜆𝑧
2𝜆𝜃

𝜕2Σ

𝜕𝜆𝑧
2  

𝛽0 =
1

𝜆𝑧𝜆𝜃

𝜕Σ

𝜕𝜆𝜃
, 𝛽1 =

1

𝜆𝑧𝜆𝜃

𝜕2Σ

𝜕𝜆𝜃
2 −

𝛽0
𝜆𝜃
, 𝛽2 =

1

2𝜆𝑧𝜆𝜃

𝜕3Σ

𝜕𝜆𝜃
3 −

𝛽1
𝜆𝜃
, 𝛽3 =

1

6

𝜕4Σ

𝜕𝜆𝜃
4 −

𝛽2
𝜆𝜃
. 

 

Solving the Eq. (9), (10) and (11) give the following partial differential equation (PDE), which 

is the nonlinear Schrodinger (NLS) equation with variable coefficient, 

,0)(|| 13

2

22

2

1 








UhUU

UU
i 





                                   Eq. 12 ) 

where U is unknown function, and 𝜇1, 𝜇2, 𝜇3 are the variable coefficients shown as the following:  

 

k
mk

k
k z

1

2
3

0

2

3
2








  

 

 








 

zz

km
k

km

kk 










 

2
32

24 2

0

22
2

2

2
1

1

 

 
02

2

02

12

2
2

2
1

2 2
5

6
510













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4. Results and Discussion 

In this subsection, the progressive wave solution to the evolution equation given in (12) will be 

presented by introducing the following form: 

 

          KiFV exp, ,      c ,       Eq. 13 

where  , K  and c  are some constants and )(F  is a real-valued unknown function to be determined 

from the solution. Introducing (13) into (12) yield 

    .02 3

2

2

112

2

1 








FFK

F
cKi

F






   Eq. 14 

By letting Kc 12 , the 


F  term can be eliminated and choosing 2

2

2

1 aK   , where a  is the 

amplitude of the wave, it gives 
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                .03

2

2

12

2

1 



FFK

F



     Eq. 15 

 

By solving Eq. (15), it gives 

         3

0

, sech expU a i K h s ds



     
  
     
    

 .                                     Eq. 16 

 

The graphical output for the solution of the NLS equation with variable coefficient (16) is illustrated 

using MATLAB. In this research, the numerical value of α is 1.948 [5]. Other than that, the axial stretch, 

λz and λθ are assumed as 0.8 and 1.2, respectively. 

 
Figure 1: The solution of NLS equation with variable coefficient (16) versus space, τ for 

the different wave profile, 𝝃  

 

 

From the Figure 1, the bell-shaped form and amplitude of wave remained the same along the 

space.The y-axis shows the radial displacement for 0 ≤ τ ≤ 6 and 0 ≤ 𝜉 ≤ 1. The wave propagates by 

preserving its bell-shaped form at the space points τ = 2, τ = 3, τ = 4, τ = 5 and τ = 6. 

 

5. Conclusion 

In this study, it is focused on the solitary wave modulation in an inviscid fluid filled in an elastic 

tube with variable radius. The artery is considered as a thin-walled, and pre-stressed thin elastic tube 

with variable radius and the blood is treated as an inviscid fluid. There are one equation of tube and two 

equations of fluids used in this study. These dimensional equations of tube and fluid are converted to 

non-dimensional equations by introducing the non-dimensional quantities. Later, reductive perturbation 

method is used by introducing the stretched coordinates, asymptotic series and differential relations to 

obtain the various orders of differential equations.Next, the various orders of differential equations are 

solved and reduced to the nonlinear evolution equation which is the variable coefficient NLS equation. 

Then, a progressive wave type of solution is proposed to the NLS equation with variable equation. The 

graphical outputs of the progressive wave solution are studied and discussed. The results shown that 

the wave maintained its symmetrical bell-shaped curve propagates to the right as time going. 
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