
Enhanced Knowledge in Sciences and Technology Vol. 2 No. 2 (2022) 266-273

© Universiti Tun Hussein Onn Malaysia Publisher’s Office

EKST

Homepage: http://publisher.uthm.edu.my/periodicals/index.php/ekst

e-ISSN : 2773-6385

*Corresponding author: afishah@uthm.edu.my
2022 UTHM Publisher. All rights reserved.
publisher.uthm.edu.my/proceeding/index.php/ekst

 Characteristics of Data Transmission from

ESP32 to Arduino IoT Cloud

Muhamad Faiz1, Afishah Alias2*

1Muhamad Faiz Zulkefli Aini, Department of Physics and Chemistry,

Faculty of Applied Sciences and Technology,

Universiti Tun Hussein Onn Malaysia, 84600 Pagoh, Johor, MALAYSIA

2*Afishah Alias,

Photonics Devices and Sensor Research Center (PDSR),

Department of Physics and Chemistry, Faculty of Applied Sciences and

Technology,

Universiti Tun Hussein Onn Malaysia, 84600 Pagoh, Johor, MALAYSIA

*Corresponding Author Designation

DOI: https://doi.org/10.30880/ekst.2022.02.02.028

Received 02 January 2022; Accepted 30 January 2022; Available online 23 November 2022

Abstract: Water storage tanks are used widely around the world to store clean

water. However, existing water storage tanks are outdated in terms of innovation.

Faulty water tanks usually need to be tended by users manually to be checked.

Isolated incidents regarding water tanks may lead to significant problems such as

compromised building structural rigidity and leakage of water tanks. Therefore, the

project proposed aims to develop a water level monitoring system that utilizes the

Internet of Things (IoT). IoT is essentially a medium for things (sensors and

devices) to communicate with each other. With the help of IoT, manual supervision

can be eliminated through the use of Dashboard. The water level monitoring system

comprised of ESP32 will be used to transmit data of water level. Arduino IoT Cloud

will be utilized as the dashboard in which users can inspect water levels inside the

water tanks without having to manually examine them themselves. The outcome for

this project will be a system where users can access the retrieved water level

monitoring data in the dashboard. This paper will discuss the delay time and the

accuracy of data transmission for the prototype built.

Keywords: Water Level Monitoring, ESP32, Arduino IoT Cloud

1. Introduction

Water has always been an essential need to humans and represents an important role in human

society. However, it can be as destructive as the benefits bring. Water causes floods, droughts and

landslides [1]. Unpredictable events or accidents also may occur on the tanks that contain water.

Industrial and residential usage count for the highest usage of water. Containers to hold water are used

in every building and the malfunction of these water tanks is inevitable. Accidents do occur involving

water tanks which cost a huge sum of money for the structural damage and appliances damage.

Faiz et al., Enhanced Knowledge in Sciences and Technology Vol. 2 No. 2 (2022) p. 266-273

267

Internet of Things (IoT) unlocks the ability to transmit and receive data without human interaction

over a network. IoT is defined as a global scale infrastructure for the Information Society,

empowering interconnecting things based on existing and evolving, interoperable information and

communication technologies reported by The International Telecommunication Union (ITU). Devices

connect to other devices through the Internet to communicate and exchange data on a day-to-day basis

to achieve specific goals which make our lives easier. Context-aware services are provided from

measurement, identification, and process capabilities for communications and information analytics

[2]. Systems need to have good reliability and impressive performance to carry out complex tasks.

Scaling to larger sizes for the distributed systems is an important factor in the designing phase [3].

Many types of devices utilize IoT in their operations such as microcontroller; Arduino,

microprocessor; Raspberry Pi and sensors.

Arduino is classified as a microcontroller. Users need to send instructions to Arduino boards for

them to read inputs and convert them into outputs. Inputs such as button pushed or triggered sensors

are read and actions like spinning a motor and posting something online are generated. Arduino is

created to create a more accessible technology. True to its objective, Arduino has been in thousands of

projects ranging from simple to complex projects. Unlike Raspberry Pi which has embedded software

to each of its boards, Arduino uses mainly Arduino Integrated Development Environment or Arduino

IDE as the medium of input across all of its boards. The main programming language for Arduino is

C++. Generic Arduino boards use USB cables to connect to users’ computers. Through proper

applications, Arduino can be of good use that brings benefits and advantages to our daily life [4][5].

The prototype utilizes ESP32 as the main operating board to process and transmit data.

To build the prototype, a set of testings involving connection to the Wi-Fi, LED circuit and

connection between Arduino Uno and ESP32 had to be done. The testings were to ensure the built

prototype works as intended and any problems arising can be fixed. Dashboard in which the data will

display is created using Arduino IoT Cloud. The circuit assembly and coding program was written to

read the input from the sensors and transmit the output to the Dashboard.

2. Components and Methods

The project starts with multiple testings regarding connection (Wi-Fi), LED circuit and

connection between Arduino Uno and ESP32. The components used for the projects are; ESP32,

LEDs, resistors, jumper wires, micro-USB cable and power bank. ESP32 is a microcontroller, just like

Arduino boards but it has Wi-Fi and Bluetooth modules integrated into the board. ESP32 has several

variants but the one that is used for this project is DOIT ESP32 DEVKIT V1. The GPIO pins

equipped for this board are 30 in total and these GPIO can be modified to be used for various

purposes with the right coding program. It has a dual-core and 2.4 GHz Wi-Fi frequency. The board is

designed for specifically smart home applications, wearables, automation and cloud-based IoT [6].

Thus, it is a reasonable choice for the project.

2.1 Testings

Testings are done before assembling the prototype. This is mainly for the understanding of the

components and should issue arise during prototype assembly, troubleshooting methods are already at

hand. The testings are done for Wi-Fi connection, LEDs circuit and boards connection. For ESP32 to

create an MQTT connection with Arduino IoT Cloud, it needs to be connected to Wi-Fi. To check if

ESP32 is capable of connecting to Wi-Fi, Arduino IDE is used to upload coding programs to the

board. Desired Wi-Fi credentials such as SSID and SSID passwords are written in a text document

named “WiFi.h” and placed into the Arduino IDE library. The connected Wi-Fi can be observed

through the serial monitor.

LED circuit test is done by connecting a simple LED circuit and ESP32. Instead of Arduino IDE,

Arduino IoT Cloud is used to configure the connection and variables needed. “random_value”

Faiz et al., Enhanced Knowledge in Sciences and Technology Vol. 2 No. 2 (2022) p. 266-273

268

variable is added to determine if the connection has been made and to match LED according to the

value put out by the board. Arduino Uno reads the data from the sensor and transmits the data to the

ESP32. The way the coding program functions for Uno is that it will keep on sending data over a

serial port with the interval of delay time. Meanwhile, the coding program for ESP32 works to keep

on receiving data serially from Uno and establish the MQTT connection. Essentially, this is a simple

test to check and establish UART communication between the two microcontrollers.

2.2 Methods

When all the testings are done, the circuit for the prototype is constructed. Figure 1 shows the

circuit constructed for the prototype. 3.3V pin on Arduino Uno is connected to the Vin pin of the

ESP32 and the GPIO 3 pin of Uno is connected to the GPIO 13 of the ESP32.

Figure 1: Full circuit layout.

Although ESP32 is the main operating board for the prototype, it is connected to Arduino Uno to

read the input from the sensors. Sensors for the water tank communicate directly with Arduino Uno.

A3 pin is in the Analog In the section of the board, which functions to convert analogue value to

digital representation [7]. ESP32 extracts the data through the A3 pin of the Uno and debug the value

to be displayed on the Dashboard. Then, the coding program is written in the Sketch program. A few

variables needed to be configured in the Arduino IoT Cloud. All three LEDs used have their variables

added as boolean (bool) to function in the manner of a switch. Another variable added is

“WaterLevel” in the terms of integer (int).

Figure 2: Coding program void setup.

Arduino Uno

ESP32

void setup() {

 // Initialize serial and wait for port to open:

 Serial.begin(9600);

 pinMode (23, OUTPUT);

 pinMode (22, OUTPUT);

 pinMode (21, OUTPUT);

 digitalWrite (23, HIGH);

 digitalWrite (22, HIGH);

 digitalWrite (21, HIGH);

 delay(1500);

Faiz et al., Enhanced Knowledge in Sciences and Technology Vol. 2 No. 2 (2022) p. 266-273

269

Figure 2 shows the void setup of the coding program. In this part of the coding program, the

pinMode function is called to declare the pins for the corresponding LEDs. After the pinMode has

been declared, the digitalWrite function is called to determine the output for the stated pins of LEDs.

Figure 3: Switch function in the coding program.

Figure 3 shows the switch function used in the coding program. The switch function works to

enable the system to read written code in an organized manner. It allows the system to run the desired

outcome based on the variable set for the switch function. For the prototype, the waterLevel variable

is set in the switch function. The function is constrained to what is mentioned in the corresponding

function itself [8] resulting in the repeated output only coming from the switch function. Therefore,

the system runs according to the waterLevel input retrieved from the Arduino Uno. The waterLevel

variable is separated into three inputs which are 30%, 50% and 100% water level.

On to the next step, building the Dashboard. Widgets are added suited to each variable in the

Arduino IoT Cloud, Dashboard tab. Figure 4 shows the completed Dashboard for the prototype.

switch (WaterLevel){

 case 1:

 if (WaterLevel == 30){

 digitalWrite (23, HIGH);

 digitalWrite (22, LOW);

 digitalWrite (21, LOW);

 LED1 = true;

 LED2 = LED3 = false;

 }

 else{

 digitalWrite (23, LOW);

 LED1 = false;

 break;

 }

 case 2:

 if (WaterLevel == 50){

 digitalWrite (23, LOW);

 digitalWrite (22, HIGH);

 digitalWrite (21, LOW);

 LED2 = true;

 LED1 = LED3 = false;

 }

 else{

 digitalWrite (22, LOW);

 LED2 = false;

 break;

 }

Faiz et al., Enhanced Knowledge in Sciences and Technology Vol. 2 No. 2 (2022) p. 266-273

270

Figure 4: Completed Arduino IoT Cloud Dashboard.

The written Sketch program is uploaded to the board. Uploading the Sketch program will

automatically connect the board to the registered Wi-Fi network and establish the MQTT connection

between the board and the Arduino IoT Cloud. Figure 5 shows the serial monitor Arduino IoT Cloud

which is connected to the mobile hotspot “faiz” and Arduino IoT Cloud.

 Figure 5: Serial monitor of Arduino IoT Cloud.

3. Results and Discussion

Figure 6 shows the Dashboard viewed from the computer. Figure 7 shows the board connected

and in synchronization with Arduino IoT Cloud. ESP32 has successfully established a connection

with the Arduino IoT Cloud. The water level data transmitted to the Arduino IoT Cloud is in

percentage.

Mobile hotspot “faiz” is used

Arduino IoT Cloud connected

Faiz et al., Enhanced Knowledge in Sciences and Technology Vol. 2 No. 2 (2022) p. 266-273

271

Figure 6: The Dashboard for the prototype.

Figure 7: The board in synchronization with the Dashboard.

Figure 7 shows the built circuit able to synchronize with the Dashboard. The overall operation

flow of the prototype is sequenced in a very organized manner. Uno transfers the data recorded by the

sensors inside the water tank into the ESP32. The ESP32 will then transmit the data to the Dashboard

in 5 seconds intervals to avoid any confusion occurring on the written coding program and the

connection to the Arduino IoT Cloud. Meanwhile, Table 1 shows the time interval of LEDs change

and the time interval of Dashboard update.

Table 1: Delay time between ESP32 and Arduino IoT Cloud.

Time interval of LEDs

change (s)

Time interval of

Dashboard update (s)

5.00 1.38

5.17 2.43

5.10 1.71

4.89 2.10

5.35 1.99

50 Water level percentage

Faiz et al., Enhanced Knowledge in Sciences and Technology Vol. 2 No. 2 (2022) p. 266-273

272

This was tested by linking the LEDs to the random_value variable. The LED changes according

to the changes of the random_value variable. The random_value was set to change every 5 seconds

and so do the LEDs. The recorded time interval of the Dashboard update should be given a tolerance

of ± 0.5 s for the random error of human reaction. The average time interval of the Dashboard update

is 1.92 s.

The time delay may be affected by the mobile network speed. Since the mobile phone utilizes a

wireless mobile network that depends on the nearest telecommunication substation, any barrier

between the two may disrupt or interrupt the connection and reduce the network speed. Table 2 shows

the expected value transmitted from the Arduino Uno, the actual value received by ESP32 and the

corresponding LEDs for the value received.

Table 2: Accuracy of data transmitted.

The expected value

transmitted by Arduino

Uno

The actual value

received by ESP32

The corresponding LEDs

for the value received

50% 50% Blue

30% 30% Red

100% 100% Green

As shown in Table 2, the actual value received by ESP32 and the expected value transmitted by

Arduino Uno is identical. The corresponding LEDs for the value received is also tallying as described

in the coding program. This proves the written coding program works in order as intended. The value

put out by Arduino Uno via pin A3 can be read by the ESP32 through the “analogRead” function. The

function is capable of converting voltage into integer values for specified pins. Thus, values can be

read and written from Uno to ESP32 respectively.

The prototype works by utilizing the MQTT protocol which directly transmits the data to the

Dashboard. Since the data transmitted by the ESP32 is considered to be minimal, server service and

an additional layer of Cloud service are not required. Unlike the prototype, Malche et al. [9] worked

on a similar concept of water level monitoring in water sources. The system used different layers for

its service and presentation because of the system requirement to process latitude and longitude for

the water sources. Moreno et al. [10] displays the perfect example for the use of server service. The

prototype recorded water depth, temperature and relative humidity across a river by using mobile

nodes. RiverCore server is used to detect the mobile nodes and extract and store the data in real-time.

4. Conclusion

The prototype was designed to facilitate users from industrial and commercial backgrounds to be

more aware of the water level in the tank. The point of data transmission for the water level detector is

to display the data obtained by sensors on the Dashboard. Like any other communication device, the

delay time transmission and receiving data is unavoidable. The average recorded delay time for data

transmission of the prototype is 1.92 seconds which is acceptable for the concerned parameter. The

working prototype is proven accurate in transmitting data to the Dashboard. It has been tested using

the real sensors inside the water tank to rid any ambiguity of any false data shown in the Dashboard.

Faiz et al., Enhanced Knowledge in Sciences and Technology Vol. 2 No. 2 (2022) p. 266-273

273

Acknowledgement

The authors would like to thank the Faculty of Applied Sciences and Technology (FAST),

Universiti Tun Hussein Onn Malaysia for its support.

References

[1] David Grey, & Claudia Sadoff. (2006). Water for Growth and Development. https://

documents.worldbank.org/en/publication/documentsreports/documentdetail/25568146831499

5282/water-for-growth-and-development

[2] Borgia, E. (2014). The Internet of Things vision: Key features, applications and open issues.

 Computer Communications, 54, 1–31. https://doi.org/10.1016/j.comcom.2014.09.008

[3] Čolaković, A., & Hadžialić, M. (2018). Internet of Things (IoT): A review of enabling

technologies, challenges, and open research issues. Computer Networks, 144, 17–39. https://

doi.org/10.1016/j.comnet.2018.07.017

[4] What is Arduino? (2018, February 5). Arduino. https://www.arduino.cc/en/Guide

/Introduction/

[5] Kushner, D. (2011, October 26). Full Page Reload. IEEE Spectrum : Technology,

Engineering, and Science News. https://spectrum.ieee.org/geek-life/hands-on/themaking-of-

arduino

[6] Babiuch, M., Foltynek, P., & Smutny, P. (2019). Using the ESP32 Microcontroller for Data

Processing. 2019 20th International Carpathian Control Conference (ICCC).

https://doi.org/10.1109/carpathiancc.2019.8765944

[7] Pan, T., & Zhu, Y. (2017). Getting Started with Arduino. Designing Embedded Systems with

Arduino, 3–16. https://doi.org/10.1007/978-981-10-4418-2_1

[8] Eckel, B. (2000). Thinking in C++, Vol. 1: Introduction to Standard C++, 2nd Edition (2nd

ed.). Prentice Hall.

[9] Malche, T., & Maheshwary, P. (2017). Internet of Things (IoT) Based Water Level

Monitoring System for Smart Village. Advances in Intelligent Systems and Computing, 305–

312. https://doi.org/10.1007/978-981-10-2750-5_32

[10] Moreno, C., Aquino, R., Ibarreche, J., Pérez, I., Castellanos, E., Álvarez, E., Rentería, R.,

Anguiano, L., Edwards, A., Lepper, P., Edwards, R. M., & Clark, B. (2019). RiverCore: IoT

Device for River Water Level Monitoring over Cellular Communications. Sensors, 19(1),

127. https://doi.org/10.3390/s19010127

https://doi.org/10.1016/j.comcom.2014.09.008
https://www.arduino.cc/en/Guide%20%20/Introduction/
https://www.arduino.cc/en/Guide%20%20/Introduction/
https://spectrum.ieee.org/geek-life/hands-on/themaking-of-arduino
https://spectrum.ieee.org/geek-life/hands-on/themaking-of-arduino
https://doi.org/10.1109/carpathiancc.2019.8765944
https://doi.org/10.1007/978-981-10-4418-2_1
https://doi.org/10.1007/978-981-10-2750-5_32
https://doi.org/10.3390/s19010127

