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Abstract: In this paper, a semi-analytical solution called differential transform
method (DTM) is applied to solve the Duffing equation. We solved examples of
Duffing equation with the homogeneous, linear and trigonometric function. The
solution is obtained semi analytically by using the DTM with aid of Excel and Maple
15. Maple 15 also used to compare the DTM solution and the exact solution by
displaying the numerical results and graphical outputs. The accuracy of the DTM is
compared to the exact solution or other methods done by previous researcher. By the
end of the research, it showed that the DTM is able to solve the Duffing equation and
obtain result close to the exact solution. However, convergence speed towards the
exact solution only to small parameter.
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1. Introduction

The differential transform method (DTM) is a semi-analytical method to solve differential
equations and developed in polynomial form based on expansions of Taylor series. DTM was
introduced by Zhau in 1986 [1]. He found out that Taylor series is too complicated to solve higher order
differential equation problems. Therefore, he introduced new form of Taylor series which known as
DTM to solve mathematical problem in electric circuit analysis. DTM has a lot of benefits. One of them
was it can be applied directly to linear and nonlinear ordinary differential equations and got a fast
convergence rate and a small calculation error. DTM also provide a series solution that will efficiently
converge to the approximate solution.

Duffing equation is a second order nonlinear ordinary differential equation in the oscillator system.
George Duffing invented the Duffing equation. The Duffing equation was well-known among engineers

since he was one of them. Because the existence of y*® in the equation, it is called a nonlinear equation.
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The general form of the Duffing equation has been written in the form

y" () + pY'(X) + pry(x) + p,y>(x) = f (%) Eg. 1
with the initial conditions
y(0) =q, y'(0) =5, Eq. 2

where p, p;, P,, and S are real constants.

The aim of this paper is to apply DTM to obtain the approximate solutions of Duffing equations.
We demonstrate the accuracy of the DTM through some test examples. Numerical comparison will be
made against the exact solution or other methods.

2. Methodology

We will illustrate the basic ideas of DTM. Consider the following nonlinear Duffing equation in
form Eq. 1 and Eq. 2. It iscommonly known if a function f(x) is definitely continuously differentiable,

then the differential transform of the f(x) function for the kth derivative is defined as follows:

= (x—%,)* d*f ()]
f(x)= , Eg. 3
kzz(; kb X ‘x=x0

The fundamental operations performed by differential transform can readily be obtained and are
listed in Table 1.

Table 1 : Operational properties of differential transformation method [2].

Original function Transformed function
f(X) =u(x) £ v(x) F(k)=U(k)xV (k)
f (X) = au(x) F(k)=aU (k)

f (X) =u(x)v(x) F (k) :Zk:v (MU (k —1)

£ (x) = 3Ux) F(k) = (k+DU(k +1)

dx
F(x)= d"u(x) F(K) = (K +1)(K +2)...(k +mU (K +m)

dx™
f(x)=u" F(k):a(k_m):{é,ii];tz?;
=000 F(k)=2klzk:U(i)U(j)u (k—i-j)

i=0 j=0
FO)=+u)" F (k) = m(m—l)..l.((m—k +1)
]
f(x) =exp(1x) x
F(k) ="

o) —si
(X) =sin(ax +a) F(k)z%sin(ﬁ!+aj
f(x) =
(X) =cos(ax+a) F(k)z%,;co %+a]
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2.1 Duffing Equation with Homogeneous Function

Consider the Duffing equation [3] as shown below:

y"(X) —3y'(X) +2y(x) —2y*(x) =0 Eq. 4
with the initial conditions

1 1
0)==,y'(0)== Eq. 5
y(0) > y'(0) 2 q
and given the exact solution
1
y(X) =—— Eq. 6
l+e

By applying DTM to Eqg. 4 from Table 1, we will obtain as follows
(K+D(k+2)Y(k+2)—3[(k+DY (k+D]+2Y (k)

k k-i
—Z{ZZY(i)Y(j)Y(k—i—j)}zo Eq. 7

i=0 j=0
By applying Table 1, the initial conditions in Eq. 5 can be transformed as

Y(0)=%,Y(1)=% Eq. 8

Substituting k = 0and the initial conditions in Eq. 8 into Eq. 7 to obtain the second term
O0+D(0+2)Y(0+2)—J(0+1Y(0O+D]+2Y(0)
0 0-i
—2|:ZZY MY ()Y (O-i- j)} =0
i=0 j=0
2Y(2)=0
Y(2)=0 Eq. 9

Continue substituting k =1 to k =5 and the initial conditions in Eq. 8 into Eq. 9 to obtain the third
term and so on.

Table 2 : Numerical solution of first term until seventh term by using DTM.

k Y (k)
0 1
2
1 1
4
2 0
3 1
48
4 0
5 1
480
6 0
7 17
80640

By using the solutions from Table 2, combine all the terms that were obtained and do the series
solution of Taylor series up to seventh term.
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Y(x) = iY(k)xk
k=0

=YO)x° +YDx +Y (2)x2 +YR)x® +Y (4)x* +Y(B)X° +Y (6)x® +Y (7)x’ +... Eq. 10

we obtain the Taylor series such as
Y(x):lJrlx—ix3 FEE R A
2 4 48 480 80640
After that, we compute numerical solution of DTM using Excel. The result obtained as in Table 5.
Figure 1 illustrate the graphical output of the results.

Eq. 11

2.2 Duffing Equation with Linear Function
Consider the Duffing equation [4] as shown below:
y"(X) +2y'(X) + y(X) +8y>(x) =1—-3x Eq. 12
with the initial conditions

1 1
0)==,y0=—= Eq. 13
YO =2.y =7 q
and given the exact solution
y(x):%e’X Eq. 14
By applying DTM to Eqg. 12 from Table 1, we will obtain as follows
(k+D(k+2)Y(k+2)+ 2[(k +DY (k +D]+Y (k)
K k=i K
+8{ZZY(i)Y(j)Y(k—i—j)}z&(k)—3z(5(k—1) Eq. 15
i=0 j=0 i=0
By applying Table 1, the initial conditions in Eq. 13 can be transformed as
Y(O):%,Y(l):—% Eq. 16
Substituting k = 0and the initial conditions in Eq. 16 into Eg. 15 to obtain the second term
O+D0O+2)Y(0+2)+2(0+DY((O+D]+Y(0)
0 0-i 0
+8{ZZY(i)Y(j)Y(O— i— j)] =5(0)-3) 5(0-1)
i=0 j=0 i=0
1
2Y(2)+==0
(2 >
1
Y (2) == Eq. 17

Continue substituting k =1 to k =5 and the initial condition in Eg. 16 into Eq. 17 to obtain the
third term and so on.

Table 3 : Numerical solution of first term until seventh term by using DTM.

Y (K)
0 1
2
1 1
2
2 1
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3 11
12
4 9
16
5 47
240
6 847
1440
7 187
672

By using the solution from Table 3, combine all the terms that were obtained and do the series
solution of Taylor series in Eqg. 10.

we obtain the Taylor series such as
Y (X) Ll L M 9 e AT s BT 6 187

2 2 4 12 16 240 1440 672
After that, we compute numerical solution of DTM using Excel. The result obtained as in Table 6.
Figure 2 illustrate the graphical output of the results. Then, we compare DTM solution with exact

solution and Daftardar and Jafari method (DJM) in Table 7 with aid of Maple 15. The result obtained
in Figure 3.

Eq. 18

2.3 Duffing Equation with Trigonometric Function

Consider the Duffing equation [5] as shown below:

y"(X) +3y(x) —2y*(X) =cos(x) sin(x) Eg. 19
with the initial conditions

y(0)=0,y'(0) =1 Eq. 20
and given the exact solution

y(x) =sin(x) B 21

By applying DTM to Eq. 19 from Table 1, we will obtain as follows
Kk

(K +1)(k +2)Y (K + 2) +3Y (K) +8|:ZkZ_iY(i)Y(j)Y (k—i— j)]

i=0 j=0

et (3] "

By applying Table 1, the initial condition in Eq. 20 can be transformed as
Y0)=0Y(1) =1 Eg. 23
Substituting k = 0and the initial condition in Eq. 23 into Eq. 22 to obtain the second term
0+1)(0+2)Y(0+2)+3Y(0)

- 2{%2\(0)\(( HY(0-i- j)} = gco{%ﬂ[%sm(gﬂ

2Y(2)=0
Y(2)=0 Eq. 24
Continue substituting k =1 to k =5 and the initial conditions in Eq. 23 into Eqg. 24 to obtain the
third term and so on.
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Table 4: Numerical solution of first term until seventh term by using DTM.

Y (k)

WNEF-R O X
[ERN

By using the solution from Table 4, combine all the terms that were obtained and do the series
solution of Taylor series in Eqg. 10.

we obtain the Taylor series such as
Y(x)= x—ixdp 33y
2 40 560
After that, we compute numerical solution of DTM using Excel. The result obtained as in Table 8.
Figure 4 illustrate the graphical output of the results. Then, we compare DTM solution with exact
solution and improved Taylor Matrix method (ITMM) in Table 9 with aid of Maple 15. The result
obtained in Figure 5.

Eq. 25

3. Results and Discussion

The results obtained demonstrate the effectiveness of DTM for solving the nonlinear Duffing
equations. The numerical solution obtained as follows:

Table 5 : Numerical solution of DTM, exact solution of 2.1 and absolute error of DTM.

X DTM solution Exact solution [3] Absolute error
0 0.5000000000 0.5000000000 0
0.1 0.5249791875 0.5249791875 0
0.2 0.5498339973 0.5498339973 0
0.3 0.5744425164 0.5744425168 4.00x10710
0.4 0.5986876546 0.5986876601 5.50 x10~°
0.5 0.6224592905 0.6224593312 4.07 x1078
0.6 0.6456560986 0.6456563062 2.08x10~7
0.7 0.6681869511 0.6681877722 8.21x10~7
0.8 0.6899717892 0.6899744811 2.69x10°°
0.9 0.7109418561 0.7109495026 7.65%x10°°
1.0 0.7310391865 0.7310585786 1.94x107°
1.1 0.7502152466 0.7502601056 4.49%x107°
1.2 0.7684286171 0.7685247853 9.62x107°
1.3 0.7856416141 0.7858349830 1.93x107*
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14
15

0.8018157411
0.8169058664

0.8021838856
0.8175744762

3.68x107*
6.69x107*

Table 6 : Numerical solution of DTM, exact solution of 2.2 and absolute error of DTM.

X DTM solution Exact solution [4] Absolute error
0 0.5000000000 0.5000000000 0
0.1 0.4483590187 0.4524187090 4.06x107°
0.2 0.3964047492 0.4093653765 1.30x1072
0.3 0.3475858103 0.3704091103 2.28x107
0.4 0.3042146540 0.3351600230 3.09%10™
0.5 0.2678238157 0.3032653299 3.54x107
0.6 0.2395249143 0.2744058181 3.49x107
0.7 0.2202301517 0.2482926519 2.81x107
0.8 0.2105960635 0.2246622821 1.41x1072
0.9 0.2105492683 0.2032828299 7.27x107°
1.0 0.2182539683 0.1839397206 3.43x1072
1.1 0.2283809488 0.1664355419 6.19x102
1.2 0.2295378286 0.1505971060 7.89%x1072
13 0.2007203098 0.1362658965 6.45x10 2
1.4 0.1066441778 0.1232984820 1.67 x1072
15 0.1081821987 0.1115650801 2.20x107t

Table 7 : Numerical solution of DJM, exact solution of 2.2 and absolute error of DJM.

X

DJM solution [4]

Exact solution [4]

Absolute error

0
0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
11
1.2
13
14
15

0.5000000000
0.4524187500

0.4093666667
0.3704187500
0.3352000000
0.3033854167
0.2747000000
0.2489187500
0.2258666667
0.2054187500
0.1875000000
0.1720854167
0.1592000000
0.1489187500
0.1413666667
0.1367187500

0.5000000000
0.4524187090

0.4093653765
0.3704091103
0.3351600230
0.3032653299
0.2744058181
0.2482926519
0.2246622821
0.2032828299
0.1839397206
0.1664355419
0.1505971060
0.1362658965
0.1232984820
0.1115650801

0
4.10x1078
1.29x10°°
9.64x10°°
4.00x10°°
1.20x107*
2.94x107*
6.26 x107*
1.20x107°
2.14x107°
3.56x10°°
5.65x1072
8.60x1072
1.27 x1072
1.81x1072
2.52x1072

381



Mohd Faizal Anemee and Abd Latif, Enhanced Knowledge in Sciences and Technology Vol. 2 No. 1 (2022) p. 375-384

Table 8 : Numerical solution of DTM, exact solution of 2.3 and absolute error of DTM.

X DTM solution Exact solution [5] Absolute error

0 0.0000000000 0.0000000000 0
0.1 0.0995007495 0.0998334166 3.33x10™*
0.2 0.1960239314 0.1986693308 2.65x1073
0.3 0.2866810784 0.2955202067 8.84x107°
0.4 0.3687592229 0.3894183423 2.07x107*
0.5 0.4398018973 0.4794255386 3.96x1072
0.6 0.4976820343 0.5646424734 6.70x1072
0.7 0.5406640663 0.6442176872 1.04x107!
0.8 0.5674525257 0.7173560909 1.50x107"
0.9 0.5772244452 0.7833269096 2.06x10™"
1.0 0.5696428571 0.8414709848 2.72x107*

Table 9 : Numerical solution of ITMM, exact solution of 2.3 and absolute error of ITMM [5].

X ITMM solution Exact solution Absolute error

0 0.0000000000 0.0000000000 0
0.1 0.0998334166 0.0998334166 4.33x1074
0.2 0.1986693308 0.1986693308 1.03x107%
0.3 0.2955202067 0.2955202067 1.66x107%
0.4 0.3894183423 0.3894183423 2.21x1078
0.5 0.4794255386 0.4794255386 2.71x107%
0.6 0.5646424734 0.5646424734 3.15x107%
0.7 0.6442176872 0.6442176872 2.29x107%
0.8 0.7173560909 0.7173560909 3.85x107 8
0.9 0.7833269096 0.7833269096 0.73x10713
1.0 0.8414709848 0.8414709848 1.57x107™"

Comparison of DTM and Exact Solution Comparison of DTM and Exact Solution

0.5
0.8

0.4

0.6
0.1

. 3
x
0 0.5 1 1.5
X -0.1

0.5

|— * Exact Solution DT'_\-1| |— * Exact Solution DT_\-1|
382 Figure 1: Graph comparison of DTM Figure 2: Graph comparison of DTM
solution with exact solution of solution with exact solution of

2.1. 2.2.
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Comparison of DTM, DJM and Exact Solution Comparison of DTM and Exact Solution
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Figure 3: Graph comparison of DTM Figure 4: Graph comparison of DTM
solution, DJM solution with solution with exact solution of
exact solution of 2.2. 2.3.

Comparison of DTM, ITMM and Exact
Solution
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Figure 5: Graph comparison of DTM
solution, ITMM solution with
exact solution of 2.3.

4, Conclusion

The higher term of DTM can improve the approximation towards the exact solution. However, the
higher term of DTM is required more computational work. For solving Duffing equation, only a few
terms is recommended to obtain the approximate value. The objectives for this research are to explore
method of DTM for solving nonlinear Duffing equation, finding the analytical solution of Duffing
equation by using DTM and compare the accuracy of DTM with exact solutions or other methods. The
problem has been solved using DTM but it is only reliable for homogeneous function (2.1) and restricted
to a small region of xfor non-homogeneous function (2.2 and 2.3). DTM is the simplest method to
apply because of less computational work to get approximation and can solve any nonlinear differential
problem. Thus, some modifications to DTM must be made due to overcome these limitations. However,
these are not in the scope of our study so then we can conclude that all the objectives of this study are
achieved. There are some recommendations that can be made for further study and research on DTM
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which are improve the algorithm of differential transform method to obtain simple short term to obtain
exact solution and using modified differential transform method with Adomain polynomials or Laplace
transform or Padé approximation [6] to improve the solution of close to exact solution.
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