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Abstract: In this paper, a semi-analytical solution called differential transform 

method (DTM) is applied to solve the Duffing equation. We solved examples of 

Duffing equation with the homogeneous, linear and trigonometric function. The 

solution is obtained semi analytically by using the DTM with aid of Excel and Maple 

15. Maple 15 also used to compare the DTM solution and the exact solution by 

displaying the numerical results and graphical outputs. The accuracy of the DTM is 

compared to the exact solution or other methods done by previous researcher. By the 

end of the research, it showed that the DTM is able to solve the Duffing equation and 

obtain result close to the exact solution. However, convergence speed towards the 

exact solution only to small parameter. 

 

Keywords: Differential Transform Method, Duffing Equation 

 

1. Introduction 

The differential transform method (DTM) is a semi-analytical method to solve differential 

equations and developed in polynomial form based on expansions of Taylor series. DTM was 

introduced by Zhau in 1986 [1]. He found out that Taylor series is too complicated to solve higher order 

differential equation problems. Therefore, he introduced new form of Taylor series which known as 

DTM to solve mathematical problem in electric circuit analysis. DTM has a lot of benefits. One of them 

was it can be applied directly to linear and nonlinear ordinary differential equations and got a fast 

convergence rate and a small calculation error. DTM also provide a series solution that will efficiently 

converge to the approximate solution. 

Duffing equation is a second order nonlinear ordinary differential equation in the oscillator system. 

George Duffing invented the Duffing equation. The Duffing equation was well-known among engineers 

since he was one of them. Because the existence of 
3y  in the equation, it is called a nonlinear equation. 
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The general form of the Duffing equation has been written in the form 

1   Eq.                                                             )()()()()( 3
21 xfxypxypxypxy 

 
with the initial conditions 

2   Eq.                                                            ,)0(                ,(0)   yy  
where ,,, 21 ppp  and   are real constants. 

 

The aim of this paper is to apply DTM to obtain the approximate solutions of Duffing equations. 

We demonstrate the accuracy of the DTM through some test examples. Numerical comparison will be 

made against the exact solution or other methods. 

 

2. Methodology 

We will illustrate the basic ideas of DTM. Consider the following nonlinear Duffing equation in 

form Eq. 1 and Eq. 2. It is commonly known if a function )(xf  is definitely continuously differentiable, 

then the differential transform of the )(xf  function for the kth derivative is defined as follows: 
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The fundamental operations performed by differential transform can readily be obtained and are 

listed in Table 1. 

 
Table 1 : Operational properties of differential transformation method [2]. 
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2.1 Duffing Equation with Homogeneous Function 

Consider the Duffing equation [3] as shown below: 

4   Eq.                                                                    0)(2)(2)(3)( 3  xyxyxyxy
 

with the initial conditions 

5   Eq.                                                                                              
4

1
(0),

2

1
(0)  yy

 
and given the exact solution 

6   Eq.                                                                                                      
1

1
)(

xe
xy


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By applying DTM to Eq. 4 from Table 1, we will obtain as follows 
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By applying Table 1, the initial conditions in Eq. 5 can be transformed as 

8   Eq.                                                                                              
4

1
(1),

2

1
(0)  YY

 
Substituting 0k and the initial conditions in Eq. 8 into Eq. 7 to obtain the second term 
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Continue substituting 1k  to 5k  and the initial conditions in Eq. 8 into Eq. 9 to obtain the third 

term and so on. 

 
Table 2 : Numerical solution of first term until seventh term by using DTM. 

 

k  )(kY  

0 

2

1
 

1 

4

1
 

2 0  

3 

48

1
  

4 0  
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480
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6 0  
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80640

17
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By using the solutions from Table 2, combine all the terms that were obtained and do the series 

solution of Taylor series up to seventh term. 
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we obtain the Taylor series such as 

11   Eq.                                                ...
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      After that, we compute numerical solution of DTM using Excel. The result obtained as in Table 5. 

Figure 1 illustrate the graphical output of the results. 

 

2.2 Duffing Equation with Linear Function 

Consider the Duffing equation [4] as shown below: 

12   Eq.                                                             31)(8)()(2)( 3 xxyxyxyxy 
 

with the initial conditions 

13   Eq.                                                                                         
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and given the exact solution 
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By applying DTM to Eq. 12 from Table 1, we will obtain as follows 
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By applying Table 1, the initial conditions in Eq. 13 can be transformed as 

16   Eq.                                                                                        
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Substituting 0k and the initial conditions in Eq. 16 into Eq. 15 to obtain the second term 
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Continue substituting 1k  to 5k  and the initial condition in Eq. 16 into Eq. 17 to obtain the 

third term and so on. 

 
Table 3 : Numerical solution of first term until seventh term by using DTM. 
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By using the solution from Table 3, combine all the terms that were obtained and do the series 

solution of Taylor series in Eq. 10. 

we obtain the Taylor series such as 

18   Eq.             ...
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After that, we compute numerical solution of DTM using Excel. The result obtained as in Table 6. 

Figure 2 illustrate the graphical output of the results. Then, we compare DTM solution with exact 

solution and Daftardar and Jafari method (DJM) in Table 7 with aid of Maple 15. The result obtained 

in Figure 3. 

 

2.3 Duffing Equation with Trigonometric Function 

Consider the Duffing equation [5] as shown below: 

19   Eq.                                                           )sin()cos()(2)(3)( 3 xxxyxyxy 
 

with the initial conditions 

20   Eq.                                                                                             1(0),0(0)  yy
 

and given the exact solution 

21   Eq.                                                                                                    )sin()( xxy 
 By applying DTM to Eq. 19 from Table 1, we will obtain as follows 
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By applying Table 1, the initial condition in Eq. 20 can be transformed as 

23   Eq.                                                                                          1(1),0(0)  YY
 Substituting 0k and the initial condition in Eq. 23 into Eq. 22 to obtain the second term 
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Continue substituting 1k  to 5k  and the initial conditions in Eq. 23 into Eq. 24 to obtain the 

third term and so on. 
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Table 4: Numerical solution of first term until seventh term by using DTM. 

 

k  )(kY  

0 0  

1 1  
2 0  
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2

1
  

4 0  
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6 0  
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  

 

By using the solution from Table 4, combine all the terms that were obtained and do the series 

solution of Taylor series in Eq. 10. 

we obtain the Taylor series such as 

25   Eq.                                                                  ...
560

3
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3

2

1
)( 753  xxxxxY

 

After that, we compute numerical solution of DTM using Excel. The result obtained as in Table 8. 

Figure 4 illustrate the graphical output of the results. Then, we compare DTM solution with exact 

solution and improved Taylor Matrix method (ITMM) in Table 9 with aid of Maple 15. The result 

obtained in Figure 5.
  

3. Results and Discussion 

The results obtained demonstrate the effectiveness of DTM for solving the nonlinear Duffing 

equations. The numerical solution obtained as follows: 

 
Table 5 : Numerical solution of DTM, exact solution of 2.1 and absolute error of DTM. 

 

x  DTM solution Exact solution [3] Absolute error 

0 0.5000000000 0.5000000000 0  

0.1 0.5249791875 0.5249791875 0  

0.2 0.5498339973 0.5498339973 0  

0.3 0.5744425164 0.5744425168 101000.4   

0.4 0.5986876546 0.5986876601 91050.5   

0.5 0.6224592905 0.6224593312 81007.4   

0.6 0.6456560986 0.6456563062 71008.2   

0.7 0.6681869511 0.6681877722 71021.8   

0.8 0.6899717892 0.6899744811 61069.2   

0.9 0.7109418561 0.7109495026 61065.7   

1.0 0.7310391865 0.7310585786 51094.1   

1.1 0.7502152466 0.7502601056 51049.4   

1.2 0.7684286171 0.7685247853 51062.9   

1.3 0.7856416141 0.7858349830 41093.1   
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1.4 0.8018157411 0.8021838856 41068.3   

1.5 0.8169058664 0.8175744762 41069.6   

 

Table 6 : Numerical solution of DTM, exact solution of 2.2 and absolute error of DTM. 

 

x  DTM solution Exact solution [4] Absolute error 

0 0.5000000000  0.5000000000 0  

0.1 0.4483590187  0.4524187090 31006.4   

0.2 0.3964047492  0.4093653765 21030.1   

0.3 0.3475858103  0.3704091103 21028.2   

0.4 0.3042146540  0.3351600230 21009.3   

0.5 0.2678238157  0.3032653299 21054.3   

0.6 0.2395249143  0.2744058181 21049.3   

0.7 0.2202301517  0.2482926519 21081.2   

0.8 0.2105960635  0.2246622821 21041.1   

0.9 0.2105492683  0.2032828299 31027.7   

1.0 0.2182539683  0.1839397206 21043.3   

1.1 0.2283809488  0.1664355419 21019.6   

1.2 0.2295378286  0.1505971060 21089.7   

1.3 0.2007203098  0.1362658965 21045.6   

1.4 0.1066441778  0.1232984820 21067.1   

1.5 0.1081821987  0.1115650801 11020.2   

 

Table 7 : Numerical solution of DJM, exact solution of 2.2 and absolute error of DJM. 

 

x  DJM solution [4] Exact solution [4] Absolute error 

0 0.5000000000  0.5000000000 0  

0.1 0.4524187500  0.4524187090 81010.4   

0.2 0.4093666667  0.4093653765 61029.1   

0.3 0.3704187500  0.3704091103 61064.9   

0.4 0.3352000000  0.3351600230 51000.4   

0.5 0.3033854167  0.3032653299 41020.1   

0.6 0.2747000000  0.2744058181 41094.2   

0.7 0.2489187500  0.2482926519 41026.6   

0.8 0.2258666667  0.2246622821 31020.1   

0.9 0.2054187500  0.2032828299 31014.2   

1.0 0.1875000000  0.1839397206 31056.3   

1.1 0.1720854167  0.1664355419 31065.5   

1.2 0.1592000000  0.1505971060 31060.8   

1.3 0.1489187500  0.1362658965 21027.1   

1.4 0.1413666667  0.1232984820 21081.1   

1.5 0.1367187500  0.1115650801 21052.2   
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Table 8 : Numerical solution of DTM, exact solution of 2.3 and absolute error of DTM. 

 

x  DTM solution Exact solution [5] Absolute error 

0 0.0000000000 0.0000000000 0  

0.1 0.0995007495  0.0998334166  41033.3   

0.2 0.1960239314  0.1986693308  31065.2   

0.3 0.2866810784  0.2955202067  31084.8   

0.4 0.3687592229  0.3894183423  21007.2   

0.5 0.4398018973  0.4794255386  21096.3   

0.6 0.4976820343  0.5646424734  21070.6   

0.7 0.5406640663  0.6442176872  11004.1   

0.8 0.5674525257  0.7173560909  11050.1   

0.9 0.5772244452  0.7833269096  11006.2   

1.0 0.5696428571  0.8414709848  11072.2   

 

Table 9 : Numerical solution of ITMM, exact solution of 2.3 and absolute error of ITMM [5]. 

 

x  ITMM solution Exact solution Absolute error 

0 0.0000000000  0.0000000000 0  

0.1 0.0998334166  0.0998334166  141033.4   

0.2 0.1986693308  0.1986693308  131003.1   

0.3 0.2955202067  0.2955202067  131066.1   

0.4 0.3894183423  0.3894183423  131021.2   

0.5 0.4794255386  0.4794255386  131071.2   

0.6 0.5646424734  0.5646424734  131015.3   

0.7 0.6442176872  0.6442176872  131029.2   

0.8 0.7173560909  0.7173560909  131085.3   

0.9 0.7833269096  0.7833269096  131073.9   

1.0 0.8414709848  0.8414709848  111057.1   

 

 

          

Figure 1: Graph comparison of DTM 

solution with exact solution of 

2.1. 

Figure 2: Graph comparison of DTM 

solution with exact solution of 

2.2. 
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4. Conclusion 

 The higher term of DTM can improve the approximation towards the exact solution. However, the 

higher term of DTM is required more computational work. For solving Duffing equation, only a few 

terms is recommended to obtain the approximate value. The objectives for this research are to explore 

method of DTM for solving nonlinear Duffing equation, finding the analytical solution of Duffing 

equation by using DTM and compare the accuracy of DTM with exact solutions or other methods. The 

problem has been solved using DTM but it is only reliable for homogeneous function (2.1) and restricted 

to a small region of x for non-homogeneous function (2.2 and 2.3). DTM is the simplest method to 

apply because of less computational work to get approximation and can solve any nonlinear differential 

problem. Thus, some modifications to DTM must be made due to overcome these limitations. However, 

these are not in the scope of our study so then we can conclude that all the objectives of this study are 

achieved. There are some recommendations that can be made for further study and research on DTM 

Figure 3: Graph comparison of DTM 

solution, DJM solution with 

exact solution of 2.2. 

 

Figure 4: Graph comparison of DTM 

solution with exact solution of 

2.3. 

 

 

Figure 5: Graph comparison of DTM 

solution, ITMM solution with 

exact solution of 2.3. 
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which are improve the algorithm of differential transform method to obtain simple short term to obtain 

exact solution and using modified differential transform method with Adomain polynomials or Laplace 

transform or Padé approximation [6] to improve the solution of close to exact solution. 
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