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Abstract: This study aims to investigate the mathematical model of incomplete 

mixing in a continuously stirred tank reactor (CSTR) and to study the impact of the 

size of a stagnant area on the steady-state. The chemical model used is a quadratic 

autocatalysis scheme with linear decay of autocatalyst, and these reactors represent 

the 'highly agitated' and 'stagnant' regions. The effect of incomplete mixing in a 

chemostat is analyzed by adjusting the size values in the stagnant region, while the 

stability of the mathematical model of incomplete mixing is determined by 

identifying the stability analysis and stability diagrams such as phase plane and time 

series plot. The study of the chemostat model with incomplete mixing is done by 

obtaining the dimensionless equations, steady-states, Jacobian Matrix, trace, and 

determinant. From the stability analysis, the obtained washout is stable while the no-

washout has no physically meaningful solutions. For the steady-state diagrams, it 

shows that the size of the stagnant region (휀) does not affect much on the steady-state 

diagram, but there is a “poor mixing” region for extremely small values of the mixing 

parameter (𝛿). Therefore, the mixing parameter does affect the steady-state diagrams 

more than size of the stagnant region. 

Keywords: Chemostat Model, Incomplete Mixing, Stability Analysis 

 

1. Introduction  

According to [1], a chemostat or continuous stirred-tank reactor (CSTR) is a basic piece of 

laboratory apparatus, that plays an important role in mathematical ecology. A study of chemostats has 

always been investigated by many researchers to improve the microbial production in the chemostat. 
The chemostat was first presented by [2] as a mechanism to culture a microbial population at a 

consistent rate for an unknown period under regulated environmental circumstances. Based on [3], the 

ability to control the growth rate of microbial experimentally is one of the major benefits of culturing 

microbial in a chemostat. However, there is less review on the imperfect mixing models. The imperfect 

mixing or non-ideal mixing models have been introduced by [4] and further mentioned in [5]. The 

concept of incomplete mixing in the chemostat is when the moment a new fluid flow through the reactor, 

it is not effectively dispersed throughout the system. According to [6], when the mixing parameter 
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approaches zero (δ → 0), ɛ becomes a dead volume as the stagnant area uncouples from the highly 

agitated area and when the mixing parameter becomes infinitely large, that approaches infinity δ →∞, 

the model is in perfect mixing as the concentration of the reactants in the couple areas of the reactor 

become the same. 

The main objectives of this study are to investigate the mathematical model of chemostat with 

incomplete mixing and to analyze the effect of size of stagnant region in the chemostat with incomplete 

mixing. The equation used is from a quadratic autocatalytic scheme with linear decay of the autocatalyst 

invented by [7]. The mathematical model contains the reactant concentration in the feed, the 

autocatalyst concentration, the rate constant for the autocatalytic step, flow rate through the reactor, the 

decay rate, time, and volume of the reactor with the residence time. For the incomplete mixing model, 

the parameter of mixing between two areas and the fraction of the total volume belonging to the stagnant 

area was introduced. The problem statement of this study are imperfect mixing in chemostat is obtained 

from the factors such as the increase of size of the reactors or the availability of cells that may grow on 

solid surfaces, such as the reactor walls or the surface of probes. These factors contribute to the difficulty 

of achieving the ideal perfect mixing. Therefore, in this study we apply the mathematical model from 

[7] to investigate the stability of the mathematical model of incomplete mixing and to analyze the effect 

of size of the stagnant region in chemostat. The stability diagrams and steady-state diagrams of the 

model are visualized using Maple software to determine their stability and to analyze effect of size of 

the stagnant region towards the steady-states. 

2. Materials and Methods 

2.1 Mathematical Model of Incomplete Mixing 

This research considered the mathematical model equation from [7] which is a chemical process 

regulated by quadratic autocatalytic kinetics with imperfect mixing. The dimensional model equations 

for the case of imperfect mixing are as follow 

Equations in the highly agitated region 

𝑉(1 − 휀)
𝑑𝑎1
𝑑𝑡

= 𝑞(𝑎0 − 𝑎1) − 𝑉(1 − 휀)𝑘1𝑎1𝑏1 − 𝑞𝛿(𝑎1 − 𝑎2),                 𝐸𝑞. 1 

                                    𝑉(1 − 휀)
𝑑𝑏1
𝑑𝑡

= 𝑞(𝑎0 − 𝑎1) − 𝑉(1 − 휀)𝑘1𝑎1𝑏1 

                            −𝑉(1 − 휀)𝑘2𝑏1 − 𝑞𝛿(𝑎1 − 𝑎2),                                         𝐸𝑞. 2 

Equations in the stagnant region 

                                            𝑉휀
𝑑𝑎2
𝑑𝑡

= 𝑞𝛿(𝑎1 − 𝑎2) − 𝑉 𝑘1𝑎2𝑏2,                                      𝐸𝑞. 3 

                                     𝑉휀
𝑑𝑏2
𝑑𝑡

= 𝑞𝛿(𝑏1 − 𝑏2) + 𝑉 𝑘1𝑎2𝑏2 − 𝑉 𝑘2𝑏2.                              𝐸𝑞. 4 

The variables and parameters in Equation (1 – 4) are 𝑎0 is the reactant concentration in the feed (mol 

𝑚−3), 𝑎1 is the reactant concentration in the agitating area (mol 𝑚−3), 𝑎2 is the reactant concentration 

in the stagnant area (mol 𝑚−3), 𝑏0 is the autocatalyst concentration in the feed (mol 𝑚−3), 𝑏1 is the 

autocatalyst concentration in the agitating area (mol 𝑚−3), 𝑏2 is the autocatalyst concentration in the 

stagnant area (mol 𝑚−3), 𝑘1 is the rate constant for the autocatalytic step, (𝑚3𝑚𝑜𝑙−1𝑠−1), 𝑘2 is the 

decay rate (𝑠−1), q is the flow rate through the reactor (𝑚3𝑠−1), t is the time (s); V is the volume (𝑚3), 
𝛿 is the parameter of mixing between the couple of areas and 휀, 0 ≤ 휀 < 1, is the fraction of the total 

volume belong to the stagnant area.  
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The dimensionless equations for imperfect mixing are obtained by reducing the number of parameters 

in equations by using the dimensional analysis method. To get the dimensionless equation, [7] 

introduced the dimensionless groups: 𝛼1 =
0

1

a

a
, 𝛼2 =

0

2

a

a
 , 𝛽1 =

0

1

a

b
, 𝛽2 =

0

2

a

b
 , 𝑡∗ = 𝑘1𝑎0𝑡. 

Equations in the highly agitated region 

𝑑𝛼1
𝑑𝑡∗

=
1 − 𝛼1
(1 − 휀)𝜏∗

+ 𝛼1𝛽1 −
𝛿(𝛼1 − 𝛼2)

(1 − 휀)𝜏∗
,                              𝐸𝑞. 5 

𝑑𝛽1
𝑑𝑡∗

=
𝛽0 − 𝛽1
(1 − 휀)𝜏∗

+ 𝛼1𝛽1 − 𝜅2𝛽1 −
𝛿(𝛽1 − 𝛽2)

(1 − 휀)𝜏∗
.                      𝐸𝑞. 6 

Equations in the stagnant region 

𝑑𝛼2
𝑑𝑡∗

=
𝛿(𝛼1 − 𝛼2)

휀𝜏∗
− 𝛼2𝛽2,                                           𝐸𝑞. 7  

𝑑𝛽2
𝑑𝑡∗

=
𝛿(𝛽1 − 𝛽2)

휀𝜏∗
+ 𝛼2𝛽2 − 𝜅2𝛽2.                                      𝐸𝑞. 8 

The non-dimensional concentration of autocatalyst in the feed, 
0

0
0

a

b
  the non-dimensional decay 

rate,
01

2
2

ak

k
 ; and the non-dimensional residence time

q

aVk 01* 
 

are the parameter groups. 

 

2.2  Steady-State Solutions 

After obtaining the dimensionless equation, the steady-state solutions need to be introduced. 

According to [8], a steady-state is a situation in which the system does not undergo any changes. 

Therefore, the derivatives must equal to zero to find the solutions.  

𝑑𝛼1
𝑑𝑡

= 0,
𝑑𝛽1
𝑑𝑡

= 0,
𝑑𝛼2
𝑑𝑡

= 0 ,
𝑑𝛽2
𝑑𝑡

= 0.                                  𝐸𝑞. 9 

Then, there are two steady-state solutions branches for the incomplete mixing in chemostat. The 

washout solution obtained is  

(𝛼1, 𝛽1, 𝛼2, 𝛽2) = (1,0,1,0).                                            𝐸𝑞. 10  

While, the no-washout solution obtained is 

(𝛼1, 𝛽1, 𝛼2, 𝛽2) = (𝛼1̂, 𝛽1̂, 𝛼2̂, 𝛽2̂).                                          𝐸𝑞. 11 

Where 

𝛽1̂ =
𝛿𝛽2

1 + 𝛿 + (𝜅2 − 𝛼1)(1 − 휀)𝜏
∗
,                                     𝐸𝑞. 12 

𝛼2̂ =
𝛿𝛼1

𝛿 + 𝛽2휀𝜏
∗
,                                                       𝐸𝑞. 13 

𝛽2̂ =
𝛿[−(𝛼1 − 𝜅2)

2(1 − 휀)휀𝜏∗2 + (휀 + 𝛿)(𝛼1 − 𝜅2)𝜏
∗ − 𝛿]

𝜏∗휀[−(1 − 휀)(𝛼1 − 𝜅2)휀𝜅2𝜏
∗2 − [(1 − 휀)𝛿𝛼1 − 𝜅2(휀 + 𝛿)]𝜏

∗ + 𝛿]
,     𝐸𝑞. 14 
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The cubic equation obtained for 𝛼1̂ is 

𝐺(𝛼1̂) = 𝐴3𝜏
∗3𝛼1

3 + 𝐴2𝜏
∗2𝛼1

2 + 𝐴1𝜏
∗𝛼1 + 𝐴0.                           𝐸𝑞. 15 

Where the coefficients 𝐴𝑖 are 

𝐴3 = (1 − 휀)
2휀[𝜏휀𝜅2(1 + 𝛿) + 𝛿], 

𝐴2 = −(1 − 휀)휀{(2𝜅2 + 3𝜅2𝛿 + 1)(1 − 휀)휀𝜅2𝜏
2 + [(1 − 휀)𝛿 

          +2(1 + 𝛿)𝜅2(휀 + 𝛿)]𝜏 + 2𝛿(1 + 𝛿)}, 

𝐴1 = 휀
2𝜅2

2(1 − 휀)2(2 + 𝜅2 + 3𝜅2𝛿)𝜏
3 + 휀𝜅2(1 − 휀){5휀𝜅2𝛿 + 2휀(1 + 𝜅2)                                𝐸𝑞. 16 

          +2ε(1 + 𝜅2) + 𝛿[𝜅2(1 + 4𝛿) + 2]}𝜏
2 + {𝛿휀(1 − 휀)(𝛿 + 2) 

          +[𝛿3 + 휀(3(2 − 휀)𝛿2 + (휀 + 2)𝛿 + 휀)]𝜅2}𝜏 + 𝛿(𝛿
2 + 휀 + 2𝛿휀), 

𝐴0 = −{𝛿휀𝜏
2(1 − 휀)𝜅2

2 + [𝛿(휀 + 𝛿) + 𝜏휀(1 − 휀)]𝜏𝜅2 + 휀𝜏(1 + 𝛿) + 𝛿
2} 

           . {δ + [(1 − ε)ε𝜅2𝜏 + 휀 + 𝛿]𝜏𝜅2}. 

By using Descartes’ Rule of Signs, shows that there are three changes and the series of coefficients of 

the cubic 𝐺(𝛼1) have one or three positive roots exist. When we assume, 𝐺(−𝛼1), shows that there are 

no signs changes in the sequence and the equation has no negative roots. 

Then, by assuming 𝐺(𝛼1 = 0) = 𝐴0 < 0  and substitute 𝐺(𝛼1 = 𝜅2) we obtain  

𝐺(𝛼1 = 𝜅2) = −{휀
2(1 + 𝛿)2(1 − 𝜅2)𝜅2𝜏

∗2 + [휀(1 + 𝛿 − 𝜅2) + 𝜅2𝛿
2]𝛿𝜏∗ + 𝛿3} < 0,        𝐸𝑞. 17 

as 0 < 𝜅2 < 1. Substitute (𝛼1 =
1+𝛿

(1− )𝜏
+𝜅2) into equation (17) we obtain 

𝐺 (𝛼1 =
1 + 𝛿

(1 − 휀)𝜏
+𝜅2) = 𝛿

4[1 + 𝜏∗𝜅2(1 − 휀)] > 0.                  𝐸𝑞. 18 

Therefore, there is always a solution when 

𝜅2 < 𝛼1 < 𝜅2 +
1 + 𝛿

(1 − 휀)𝜏∗
.                                                 𝐸𝑞. 19 

According to [7], they conjecture that when the no-washout solution is physically meaningful it is 

uniquely defined and it does not seem possible to obtain any more useful results regarding the no-

washout solution branch. 

2.3  Stability Analysis 

The stability of the steady-state solutions needs to be studied to obtain the stability of the mathematical 

model of incomplete mixing and it is important to explore the dynamical systems of the model. 

According to [8], the steady-state will be stable provided that the following condition is satisfied. The 

Jacobian matrix along the washout branch (1,0,1,0) are as follow 
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𝐽(1,0,1,0) =

(

 
 
 
 
 
 
−
(1 + 𝛿)

(1 − 휀)𝜏∗
−1

𝛿

(1 − 휀)𝜏∗
0

𝛽1 −
(1 + 𝛿)

(1 − 휀)𝜏∗2
+ 1 − 𝜅2 0

𝛿

(1 − 휀)𝜏∗2

𝛿

휀𝜏∗
0 −

𝛿

휀𝜏∗
−1

0
𝛿

휀𝜏∗
0 −

𝛿

휀𝜏∗
+ 1 − 𝜅2)

 
 
 
 
 
 

.     𝐸𝑞. 20  

The determinant and trace for the Jacobian matrix along the washout branch (1,0,1,0) are as follow 

| 𝐽 | =
𝛿(휀2𝜏∗2𝜅2

2 − 휀𝜏∗2𝜅2
2 − 𝛿𝜅2𝜏

∗2 + 휀𝜅2𝜏
∗2 − 휀2𝜏∗2 − 𝛿𝜏∗2 + 휀𝜏∗2 − 𝜏∗2 + 𝛿)

(−1 + 휀)2𝜏∗4휀2
.     𝐸𝑞. 21 

)(JTrace = −
2(1 − 𝛿)

(1 − 휀)𝜏∗
+ 2 − 2𝜅2 −

2𝛿

휀𝜏∗
.                                    𝐸𝑞. 22 

Since the determinant and trace obtained follows the condition which is the system will be stable 

provided the trace is always negative and determinant always positive, therefore the system of the 

Jacobian matrix along the washout branch is stable while the system of the Jacobian matrix along the 

no-washout branch has no physically meaningful solution. 

3. Results and Discussion 

3.1  Stability Diagram 

The phase plane diagram of the reactant concentration against autocatalysis concentration in highly 

agitated region and the phase plane diagram of the reactant concentration against autocatalysis 

concentration in stagnant region will be visualized using Maple. The time series plot of the reactant 

concentration in highly agitated region (𝛼1), the autocatalysis reactant concentration in highly agitated 

region (𝛽1), the reactant concentration in stagnant region (𝛼2) and time series plot of the autocatalysis 

reactant concentration in stagnant region (𝛽2) also will be plotted using Maple Software. 

3.1.1  Phase Plane Analysis 

Figure 1 shows the phase plane diagram of the concentration in highly agitated region. It is shown that 

the arrows approaching the washout point and obtain (𝛼1, 𝛽1) = (1,0) and the graph is in stable node. 

By using Maple Software, the corresponding eigenvalues for highly agitated region obtained are 𝜆1 =
−0.4565714290 and 𝜆2 = −1.428571429, where both of the eigenvalues is negative. Since the 

eigenvalues obtain is negative and the graph in a stable node, the washout steady-state for (1,0) is stable.  

Figure 2 shows the phase plane diagram of the concentration in stagnant region. Based on the graph, it 

shows that the graph is in unstable saddle point because the arrow did not approach any point. By using 

Maple Software, the corresponding eigenvalues obtain for stagnant region are 𝜆1 = 0 and 𝜆2 = 0.927 

respectively. Since both of the eigenvalues are real and always positive, the fixed point at (1,0) for 

stagnant region is unstable. 
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       Figure 1: Concentration in Highly Agitated Region       Figure 2: Concentration in Stagnant Region  

3.1.2  Time Series Plot 

Based on Figure 3, provides a time series plot of the reactant concentration in highly agitated region 

against residence time. It shows that the reactant concentration in highly agitated region decreases with 

increasing residence time. The maximum value for the reactant concentration occurs when the residence 

time is zero which is the concentration of reactant entering the reactor. There is an extreme decrease 

from 𝜏∗ = 0 to 𝜏∗ = 4 and become constant at 𝛼1 = 0.6, which means that the reactant concentration 

of the chemical is always decreased through the certain residence time and constant as the reactant 

concentration is achieved through the infinite residence time. 

 

        Figure 3: Reactant Concentration in Highly Agitated Region        

Figure 4 shows the autocatalysis reactant concentration in the highly agitated region against residence 

time with initial condition 𝜅2 = 0.028, 휀 = 0.3, 𝛿 = 0.2 and 𝜏∗ = 1. It shows that the autocatalysis 

reactant concentration in highly agitated region increases with the increase of residence time. The 

maximum value of the autocatalysis concentration is 0.49 respectively and becomes constant 

throughout the infinite of residence time. The value of the residence time at the maximum value for the 

autocatalytic concentration is called the maximum residence time [9]. Therefore, the incomplete mixing 
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has a larger effect upon the required value of the residence time rather than the maximum value of the 

autocatalyst.      

 

Figure 4: Autocatalysis Concentration in Highly Agitated Region  

 

         Figure 5: Reactant Concentration in Stagnant Region                            

For Figure 5, the reactant concentration in stagnant region slightly increases from 𝜏∗ = 0 to 𝜏∗ = 0.55 

and become decreases with the increase of the residence time. The maximum value for reactant 

concentration in stagnant region is 1.21 respectively with the values of 0.55 for residence time. This 

shows that the maximum values of reactant concentration in stagnant region slightly affect the residence 

time. Based on Figure 6, shows that the time series plot of autocatalyst concentration against residence 

time with initial values 𝜅2 = 0.028, 휀 = 0.3, 𝛿 = 0.2 and 𝜏∗ = 1. The trend of the graph is increasing 

from 𝜏∗ = 0 to 𝜏∗ = 350 and constant at 𝛽2 = 47 throughout the residence time. It means that when the 

concentration of autocatalyst increase the residence time become increase.  
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                               Figure 6: Autocatalysis Concentration in Stagnant Region                    

3.2 Steady-State Diagram 

The steady-state diagrams for dimensionless reactant concentration for imperfect mixing in highly 

agitated and in stagnant region are plotted with different values of size of the stagnant regions. The 

values are 휀 = 0.3, 휀 = 0.2, 휀 = 0.1 with a same initial condition which are 𝜅2 = 0.028, 𝛿 = 0.2 and 

𝜏∗ = 1. 

3.2.1 Reactant Concentration in Highly Agitated Region 

 

          Figure 7: Steady-state diagram of reactant concentration in highly agitated region 

Based on Figure 7, shows the steady state curve for the dimensionless reactant concentration as a 

function of the dimensionless residence time. We consider three different values for the size of the 

stagnant region from [7] which is 휀 = 0.3 (red line), 휀 = 0.2 (blue line) and 휀 = 0.1 (green line). From 

the graph we will obtain the critical value for the residence time that occurs when the size of stagnant 

region is sufficiently small. For 휀 = 0.3, we obtain (𝜏∗, 𝛼1) = (4.5,0.54). For 휀 = 0.2, we obtain 

(𝜏∗, 𝛼1) = (4.0,0.57) and for 휀 = 0.1, we obtain (𝜏∗, 𝛼1) = (3.5,0.60). As the value of size of the region 
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decrease, the residence time becomes increase. It shows that the effects of incomplete mixing are greater 

at lower reactant concentration. 

3.2.2  AutocatalyticReactant Concentration in Highly Agitated Region 

      Figure 8 shows the steady-state curve for the dimensionless autocatalysis reactant concentration as 

a function of the dimensionless residence time. We consider three values for the size of the stagnant 

region which is 휀 = 0.3 (red line), 휀 = 0.2 (blue line) and 휀 = 0.1 (green line). From the graph, we will 

obtain that there is a maximum value for the residence time that occurs when the size of stagnant region 

is sufficiently small. For 휀 = 0.3, we obtain (𝜏∗, 𝛼1) = (3.5,0.49). For 휀 = 0.2, we obtain (𝜏∗, 𝛼1) =

 (4.0,0.52) and for 휀 = 0.1, we obtain (𝜏∗, 𝛼1) = (5.0,0.55). When the size of stagnant region increase, 

the reactant concentration becomes increase throughout the residence time. 

 

         

Figure 8: Steady-state diagram of autocatalysis reactant concentration in highly agitated region 

4. Conclusion 

In this paper, the stability analysis was conducted to investigate the mathematical model of 

incomplete mixing in chemostat.The dimensionless equations, steady-states, Jacobian Matrix, trace, and 

determinant are used to study the chemostat model with incomplete mixing.The obtained washout from 

the system is stable while the no-washout solution has no physically meaningful. The effect of size of 

stagnant region towards the steady-state is also discussed in this paper.The stability diagrams such as 

phase plane, time series plot and steady-state diagrams are visualized using Maple Software. 

For future study, it is suggested that when investigating the mathematical modeling of incomplete 

mixing in Continuous Stirred Tank Reactor (CSTR), other factors such as the flow rate, volume of the 

reactor, the mixing parameter, the initial of the reactant concentration, the reactant concentration, and 

the autocatalyst concentration should be considered. This is because these characteristics are important 

factors that influence the formation and stabilization of the model in incomplete mixing chemostat.  
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