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Abstract : In this paper, we introduced and investigated the notions of 

θ−GN−preclosed sets in grill topological space, θ−GN−precontinuous 

function and strongly θ−GN−precontinuous function. Furthermore, we 

studied the relations between the θ−GN−precontinuous and other known 

continuous function. They will be introduced in grill topological spaces by 

using the GN−preopen sets. 
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1. Introduction 

The idea of grill on a topological space, given by Choquet [2], goes as follows: A non-null 

collection G of subsets of a topological spaces X  is said to be a grill on X  if 

(i) A ∈ G and A ⊆ B ⇒ B ∈ G 

(ii) A,B ⊆ X  and  A∪ B ∈ G ⇒  A∈ G or B ∈ G. 

For a topological space X , the operator Φ : P (X) → P (X), given by[5] 

Φ(A) = {x ∈ X : U ∩ A ∈ G, for each open neighborhood U of x}, 

and the operator Ψ:P (X) → P (X), given by Ψ(A)= A∪  Φ(A). Then there exists a unique 

topology τG  on X given by τG = {U ⊆ X : Ψ(X-U) = X-U},  such that τ ⊆ τG. 

In 1968 Velicko [3] introduced the notions of  θ−open sets.  In 1982 Mashhour [4], 

introduced the notion of a precontinuous function. In 2009 Al-Omari and Noiri [1], introduced 
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the notions of N−precontinuous function.  In 2010 Hatir and Jafari [3], introduced the notions 

of G−precontinuous function. 

For a topological space (X,τ ) and A⊆  X, throughout this paper, we mean Cl(A) and Int(A) 

the closure set and the interior set of A, respectively . 

Definition 1.1.  [9] Let (X,τ ) be topological space and A⊆  X. A point x ∈ X is called 

θ−cluster point of A if Cl(U)∩A≠ϕ for every open set U in X containing x. 

The set of all θ−cluster points of A is called the θ−closure set of A and denoted by 

Clθ(A). A subset A of topological space (X,τ) is called θ−closed set in (X,τ) if Clθ(A)=A. The 

complement of θ−closed set in (X,τ) is called θ−open set. 

Theorem 1.2.   [9] Every θ−closed set in topological space (X,τ) is closed set. 

Definition 1.3. [9] A function f:(X,τ) → (Y,ρ) of a topological space (X,τ) into a space (Y,ρ) 

is called θ−continuous if for each x∈ X and each V  in Y  containing f(x), there exists an 

open set U in X containing x such that f(Cl(U))⊆   Cl(V). 

Definition 1.4.   [6] A subset A of a grill topological space (X,τ,G) is called a GN−preopen 

set if for each x∈ A, there exists a G−preopen set Ux  containing x such that Ux −A is a finite 

set. The complement of GN−preopen set is called GN−preclosed set. 

Theorem 1.5.   [6] The intersection of an open set and GN−preopen set is a GN−preopen 

set. 

Definition 1.6.   [6] Let (X,τ,G) be a grill topological space and A⊆ X. The GN−closure set 

of A is defined as the intersection of all GN−preclosed subsets of X containing A and is 

denoted by GNCl(A). The GN−interior set of A is defined as the union of all GN−preopen 

subsets of X contained in A and is denoted by GNInt(A).  

Theorem 1.7.   [6] For a subset A⊆  X of grill topological space (X,τ,G), the following hold: 

1.  If U is an open set in X, then GNCl(A)∩U⊆   GNCl(A∩U). 

2.  If U is a closed set in X, then GNInt(A∪  U)⊆   GNInt(A)∪  U. 

Definition 1.8.   [8] A function f:(X,τ,G) → (Y,ρ) of a grill topological space (X,τ,G) into a 

topological space (Y,ρ) is called GN−precontinuous if f −1(U) is a GN−preopen set in 

(X,τ,G) for every open set U in Y . 

Definition 1.9.   [8] A function f:(X,τ,G) → (Y,ρ) of a grill topological space (X,τ,G) into a 

space (Y,ρ) is called: 

1. An almost GN−precontinuous if for each x∈ X and each open set V in Y containing f(x), 

there is a GN−preopen set U in (X,τ,G) containing x such that f(U)⊆  Int[Cl(V)]. 

2. Weakly GN−precontinuous function, if for each x∈ X and each open set V in Y containing  

f(x), there is a GN−preopen set U in (X,τ,G) containing x such that f(U)⊆  Cl(V). 

The purpose of this paper is extend the notion of GN−precontinuous by giving the concept of 

functions is called  

θ - GN -precontinuous in a grill topological space. 

 

2.  θ−GN−Preclosed set  
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Let (X,τ,G) be grill topological space and A⊆  X.  A point x∈ X is called θ−GN−precluster 

point of A if GNCl(U)∩A≠ϕ for every GN−preopen set U containing x. The set of all 

θ−GN−precluster points of A is called the θ−GN−preclosure set of A and denoted by 

GNClθ(A). 

Definition 2.1.  A subset A of grill topological space (X,τ,G) is called θ−GN−preclosed 

set, if GNClθ(A)=A. The complement of θ−GN−preclosed set is called θ−GN−preopen set 

in (X,τ,G). 

Theorem 2.2.   Every θ−closed set in topological space (X,τ) is θ−GN−preclosed set in 

grill topological space (X,τ,G). 

Proof.  Let A be a θ−closed set in a space (X,τ), that is, Clθ(A)=A. It is clear that A⊆  

GNClθ(A). We prove that GNClθ(A)⊆  A. Let x∈ GNClθ(A). Then GNCl(U)∩A≠ϕ. Since 

GNCl(U)⊆  Cl(U), then Cl(U)∩A≠ϕ. Then x∈Clθ(A)=A. Hence GNClθ(A)⊆  A. That is, A is a 

θ−GN−preclosed set in (X,τ,G). 

The converse of the last theorem no need to be true.  

Example 2.3.   In a grill topological space (X,τ,G), where X={a,b,c}, τ={ ϕ,X, {a,b}} and 

G={{c}, {a,c}, {b,c},X} , the set {a} is a θ−GN−preclosed set in (X,τ,G), but it is not 

θ−closed set in (X,τ). 

Theorem 2.4.   Every θ−GN−preclosed set is GN−preclosed set. 

Proof.  Let (X,τ,G) be a grill topological space and A be a θ−GN−preclosed set, that is, 

GNClθ(A)=A. It is clear that A⊆  GNCl(A). We prove that GNCl(A)⊆  A.   Let x∈ GNCl(A).   

Then U∩A≠ϕ. Since U⊆  GNCl(U), then GNCl(U)∩A≠ϕ. Then x∈ GNClθ(A)=A. Hence 

GNCl(A)⊆  A. That is, A is a GN−preclosed set in (X,τ,G). 

Theorem 2.5.   For open set H in grill topological space (X,τ,G), GNClθ(H)= GNCl(H).  

Proof.  Let x∈ GNCl(H). Then for every GN−preopen set U in (X,τ, G) containing x, 

U∩H≠ϕ. Since U⊆  GNCl(U), then GNCl(U)∩H≠ϕ. Hence x∈ GNClθ(H). That is, GNCl(H)⊆  

GNClθ(H). For the other side, let x∈ GNClθ(H). Then for every GN−preopen set U in (X,τ,G) 

containing x, GNCl(U )∩H≠ϕ. Since H is open set, then by Theorem (1.7), GNCl(U)∩H⊆  

GNCl(U∩H). Then GNCl(U∩H) ≠ϕ. Hence U∩H≠ϕ.   That is, x∈ GNCl(H).   That is, 

GNClθ(H)⊆  GNCl(H). 

Theorem 2.6.   A subset U is θ−GN−preopen set in grill topological space (X,τ,G) if and 

only if for each x∈U there is GN−preopen set V  in (X,τ,G) containing x such that GNCl(V 

)⊆  U . 

Proof.  Suppose that U is θ−GN−preopen set in (X,τ,G) and x∈U . Then x∉ X−U= 

GNClθ(X−U). Then there is GN−preopen set V  in (X,τ,G) containing x such that 

GNCl(V)∩(X−U)=ϕ. That is, GNCl(V)⊆  U. 

Conversely, suppose that U  is not θ−GN−preopen set.  Then X−U  is not θ−GN−preclosed 

set.  That is, there is x∈ GNClθ(X−U) and x∉ X−U .  Since x∈U, then by the hypothesis, there 

is GN−preopen set V  in (X,τ,G) containing x  such that GNCl(V) ⊆  U.   This implies, 

GNCl(V)∩(X−U)=ϕ and this contradiction. Hence U is θ−GN−preopen set. 

3. θ−GN−Precontinuous Functions  
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Definition 3.1. A function f:(X,τ,G) → (Y,ρ) of a grill topological space (X,τ,G) into a space 

(Y,ρ) is called θ−GN−precontinuous function  if for each x∈ X and each open set V  in (Y,ρ) 

containing f(x), there exists GN−preopen set U in (X,τ,G) containing x such that f(GNCl(U))⊆ 

Cl(V). 

Theorem 3.2.   A function f:(X,τ,G) → (Y,ρ) is θ−GN−precontinuous if and only if 

))(())(( 11 VClfVfCl
NG

 
 

for every open set V  in (Y,ρ). 

Proof.  Suppose that f  is θ−GN−precontinuous.   Let V  be any open set in (Y,ρ).  

Let x ∉ f −1(Cl(V)). Then f(x)∉ Cl(V). Then f(x)∈ Y−Cl(V). Since Y−Cl(V) is open set in (Y,ρ) 

and f  is θ−GN−precontinuous, then there exists GN−preopen set U  in (X,τ,G) containing x 

such that  

)).(())(( VClYClUClf
NG   

This implies, 

 .Int(Cl(V))-Y=Cl(V))-Cl(Y Cl(U))(
NG f  

Hence 

 .Int(Cl(V)) Cl(U))(
NG f  

Since 

 )),((Int(V)V VClInt  

then f(GNCl(U))∩V=ϕ and so GNCl(U)∩f −1(V)=ϕ. Since U is GN−preopen set, then x∉ 

GNClθ(f −1(V)). Hence 

))(())(( 11 VClfVfCl
NG

 
 

Conversely, let x∈ X be any point and V  be any open set in (Y,ρ) containing f(x). Since 

V∩(Y−Cl(V))=ϕ, then f (x) ∉ Cl(Y − Cl(V )).  This implies, x∉ f −1[Cl(Y−Cl(V))]. Since 

Y−Cl(V) is an open set in (Y,ρ), then by the hypothesis, 

 Cl(V))]-(Y[C] Cl(V))-(Y[ 11 lffCl
NG

 
 

Then x∉ GNClθ[f −1(Y−Cl(V))]. Hence there is GN−preopen set U in (X,τ,G) containing x such 

that 

 .(V))C-(Y (U)C 1

GN
  lfl  

This implies, f(GNCl(U))⊆  Cl(V). Hence f is θ−GN−precontinuous. 

Theorem 3.3.   A function f:(X,τ,G) → (Y,ρ) is θ−GN−precontinuous if and only if 

 (V),(V))](C[C 11

GN

  fXlfXl  

for every open set V  in (Y,ρ). 
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Proof.  Suppose that f  is θ−GN−precontinuous.   Let V  be any open set in (Y,ρ). 

Let x∉ X−f −1(V). Then f(x) ∈ V. Since f is θ−GN−precontinuous, then there exists 

GN−preopen set U in (X,τ,G) containing x such that f(GNCl(U))⊆  Cl(V). This implies, 

GNCl(U)⊆  f −1(Cl(V)). Then 

.(V))](C[(U)C 1

GN
  lfXl . 

Since U is a GN−preopen set, then x∉ GNClθ[X–f -1(Cl(V))]. Hence 

 (V).(V))](C[C 11

GN

  fXlfXl  

Conversely, let x∈ X be any point and V  be any open set in (Y,ρ) containing f(x).  

Then x∈ f −1(V), that is, x∉ X−f −1(V). Then by the hypothesis, x∉ GNClθ[X−f −1(Cl(V))]. That 

is, there is GN−preopen set U in (X,τ,G) containing x such that 

.(V))](C[(U)C 1

GN
  lfXl  

This implies, GNCl(U)⊆  f −1(Cl(V)) and so f(GNCl(U))⊆  Cl(V). Hence f is 

θ−GN−precontinuous. 

Theorem 3.4.   For a function f:(X,τ,G) → (Y,ρ), the following properties are equivalent:  

1. f is θ−GN−precontinuous. 

2. GNClθ(f −1(B))⊆  f −1(Clθ(B)) for every subset B⊆  Y. 

3. f(GNClθ(A))⊆  Clθ(f(A)) for every subset A⊆  X. 

Proof.  (1) ⇒ (2):  Let B be any subset of Y.  Suppose that x∉ f −1(Clθ(B)). Then f(x)∉ Clθ(B). 

Then there is an open set V  in Y  containing f(x) such that Cl(V)∩B=ϕ.  Since f is 

θ−GN−precontinuous, then there exists GN−preopen set U in (X,τ,G) containing x such that 

f(GNCl(U ))⊆  Cl(V). Then we have f(GNCl(U))∩B=ϕ. This implies, GNCl(U)∩ f −1(B)=ϕ. 

Hence x∉ GNClθ(f −1(B)). That is, 

 (B)).(C(B))(C 11

GN

 lffl    

(2) ⇒ (1): Let x∈ X and V  be any open set in (Y,ρ) containing f(x). Since Cl(V)∩(Y−Cl(V)) 

=ϕ, then f(x)∉ Clθ(Y−Cl(V)). This implies, x∉ f −1[Clθ(Y−Cl(V))]. Since Y−Cl(V)⊆  Y, then 

by the hypothesis, 

 Cl(V)).-(Y(C(V))]C -(Y[C 11

GN

 lflfl    

Then x∉ GNClθ[f −1(Y−Cl(V))]. Hence there is GN−preopen set U in (X,τ,G) containing x 

such that 

.(V))C-(Y(U)C 1

GN
  lfl  

This implies, f(GNCl(U))⊆  Cl(V). Hence f is θ−GN−precontinuous. 

(2) ⇒ (3): Let A be any subset of X. Since f(A)⊆  Y, then by the hypothesis, 

 )].)(([C]))(([C(A) C 11

GN
AflfAffll

NG

    

This implies, f(GNClθ(A))⊆  Clθ(f(A)). 
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(3) ⇒ (2): Let B be any subset of Y. Since f −1(B)⊆  X, then by the hypothesis, 

 .)(BC]))(([Cl(B))]( C[ 11

GN

 lBfflflf  
 

This implies, GNClθ(f −1(B))⊆  f −1(Clθ(B)). 

Lemma 3.5.   Let f:(X,τ,G) → (Y,ρ) be a function. Then the following statements are 

equivalent: 

1. f is an almost GN−precontinuous. 

2. f −1(F) is GN−preclosed set in (X,τ,G) for every r−closed set F in Y. 

3. f −1(V) is GN−preopen set in (X,τ,G) for every r−open set V  in Y. 

Proof.  (1)⇒ (2): Let F be any r−closed set in (Y,ρ) and 

).()( 11 FYfFfXx  
 

Then Y−F is r−open and, so open set in (Y,ρ) containing f(x). Since f is an almost 

GN−precontinuous, then there is a GN−preopen set U in (X,τ,G) containing x such that 

.)]([)( FYFYClIntUf   

This implies, 

),()( 11 FfXFYfUx    

that is, X−f −1(F) is GN−preopen set. Hence f −1(F) is GN−preclosed set in (X,τ,G). 

(2) ⇒ (3): It is trivial. 

(3) ⇒ (1): Let x∈ X and V be any open set in (Y,ρ) containing f(x). Since Int(Cl(V)) is r−open 

set in Y  containing  f(x). Then by the hypothesis, U=f −1[Int(Cl(V))]  is GN−preopen set in 

(X,τ,G) containing x and 

)).(())]](([[)( 1 VClIntVClIntffUf  
 

Hence f is an almost GN−precontinuous. 

Theorem 3.6.   Every almost GN−precontinuous is θ−GN−precontinuous. 

Proof.  Let f:(X,τ,G) → (Y,ρ) be almost GN−precontinuous. Let x∈ X be any point and V  be 

any open set in (Y,ρ) containing f(x). Since 

))](([)]([)( VClIntClVIntClVCl   

and 

).()]([))](([ VClVClClVClIntCl   

then Cl(V) is r−closed set in Y. Since Int(Cl(V)) is r−open set in Y  containing f(x) and f is 

almost GN−precontinuous, then by Lemma (3.5), U=f −1[Int(Cl(V))]  is GN−preopen set and 

f −1(Cl(V)) is GN−preclosed set in (X,τ,G) and 

)).(())](([))]](([[)( 111 VClfVClfClVClIntfClUCl
NNN GGG

   
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This implies,  

).())(( VClUClf
NG   

Hence f is θ−GN−precontinuous. 

Theorem 3.7.   Every θ−GN−precontinuous is weakly GN−precontinuous. 

Proof.  Let f:(X,τ,G) → (Y,ρ) be θ−GN−precontinuous. Let x∈ X be any point and V  be any 

open set in (Y,ρ) containing  f(x). Then there exists GN−preopen set U in (X,τ,G) containing 

x such that f(GNCl(U))⊆  Cl(V). Since 

),())(()( VClUClfUf
NG   

then f is weakly GN−precontinuous. 

Definition 3.8. A function f:(X,τ,G) → (Y,ρ) is called strongly θ−GN−precontinuous 

function if for each x∈X and each open set V  in (Y,ρ) containing f(x), there is GN−preopen 

set U in (X,τ,G) containing x such that f(GNCl(U))⊆  V. 

Theorem 3.9.   A function f:(X,τ,G) → (Y,ρ) is strongly θ−GN−precontinuous if and only if 

f −1(V) is θ−GN−preopen set in (X,τ,G) for every open set V  in (Y,ρ). 

Proof.  Suppose that f is strongly θ−GN−precontinuous.  Let V be any open set in (Y,ρ). We 

prove that X−f−1(V) is θ−GN−preclosed set. Let x∉ X−f−1(V). Then f(x)∈  V. Since f is 

strongly θ−GN−precontinuous, then there exists GN−preopen set U in (X,τ,G) containing x, 

such that f(GNCl(U))⊆V. This implies, GNCl(U)⊆  f −1(V). Hence 

.)()( 1   VfXUCl
NG  

Since U is GN−preopen, then x∉ GNClθ(X−f −1(V)). Hence 

).())(( 11 VfXVfXCl
NG

 
 

Hence f −1(V) is θ−GN−preopen set. 

Conversely, let x be any point in X and V  be any open set in (Y,ρ) containing f(x). Then by 

the hypothesis,    f −1(V) is θ−GN−preopen set, that is, X−f −1(V) is θ−GN−preclosed set. 

Since 

)).(()( 11 VfXClVfXx
NG

  
 

Then there is GN−preopen set U in (X,τ,G) containing x such that 

.)()( 1   VfXUCl
NG  

This implies, f(GNCl(U))⊆  V. Hence f is strongly θ−GN−precontinuous. 

Corollary 3.10.   A function f:(X,τ,G) → (Y,ρ) is strongly θ−GN−precontinuous if and only 

if f −1(V) is θ−GN−preclosed set in (X,τ,G) for every closed set V  in (Y,ρ). 

Theorem 3.11.   For a function f:(X,τ,G) → (Y,ρ), the following properties are equivalent:  

1. f is strongly θ−GN−precontinuous. 

2. f(GNClθ(A))⊆  Cl(f(A)) for every subset A⊆  X. 
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3. GNClθ(f −1(B))⊆  f −1(Cl(B)) for every subset B⊆  Y.  

Proof.  (1) ⇒ (2): Let A be any subset of X. Suppose that y∉ Cl(f (A)). Then there is an open 

set V in Y containing y such that f(x)=y and V∩f(A)=ϕ.  Since f is strongly 

θ−GN−precontinuous, then there exists GN−preopen set U in (X,τ,G) containing x such that 

f(GNCl(U))⊆  V.  Then we have 

.)())((])([  AfUClfAUClf
NN GG  

This implies, GNCl(U)∩A=ϕ. Hence x∉ GNClθ(A). That is, y∉ f(GNClθ(A)). Hence 

)).(())(( AfClAClf
NG 

 

 (2) ⇒ (3): Let B be any subset of Y. Since f −1(B)⊆  X, then by the hypothesis, 

).())](([))](([ 11 BClBffClBfClf
NG  

 

Hence 

)).(())(( 11 BClfBfCl
NG

 
 

 (3) ⇒ (1): Let V  be any open set in (Y,ρ). Since Y−V  is closed set in Y  and by the hypothesis, 

1 1 1

1 1

( ( )) ( ( )) ( ( ))

( ) ( )

N NG GCl X f V Cl f Y V f Cl Y V

f Y V X f V

   

 

    

   
 

Hence X−f −1(V) is θ−GN−preclosed set. That is, f −1(V) is θ−GN−preopen set. Then by 

Theorem (3.9), f is strongly θ−GN−precontinuous. 

Theorem 3.12.   Every strongly θ−GN−precontinuous is GN−precontinuous. 

Proof.  From Theorem (3.9) and the fact every θ−GN−preopen set is GN−preopen set. 

Theorem 3.13.   Let (Y,ρ) be a regular space.  Then, for a function f:(X,τ,G) → (Y,ρ), the 

following properties are equivalent:  

1. f is weakly GN−precontinuous. 

2. f is GN−precontinuous. 

3. f is strongly θ−GN−precontinuous. 

Proof.  (1) ⇒ (2):  Let f be weakly GN−precontinuous.  Let x be any point in X and V  be any 

open set in Y  containing f(x). Since Y is regular, then there is an open set M in Y containing 

f(x) such that Cl(M)⊆  V.  Since f is weakly GN−precontinuous, then there is GN−preopen set 

U in (X,τ,G) containing x such that f(U)⊆  Cl(M)⊆  V.  Hence f is GN−precontinuous. 

 (2) ⇒ (3): Let f be GN−precontinuous. Let x∈ X be any point and V be any open set in Y 

containing f(x). Since Y is regular, then there is an open set M in Y containing f(x) such that 

Cl(M )⊆  V.  Since f −1(M) is GN−preopen set and f −1(Cl(M)) is GN−preclosed set in (X,τ,G). 

Let U=f −1(M). Then we have 

)).(()))((())(()( 111 MClfMClfClMfClUCl
NNN GGG

   

This implies, 
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NG   

 Hence f is strongly θ−GN−precontinuous. 

(3) ⇒ (1): The proof follows immediately from the definitions.  

Corollary 3.14.   Let (Y,ρ) be a regular space.  Then, for a function f:(X,τ,G) → (Y,ρ), the 

following properties are equivalent:  

1. f is θ−GN−precontinuous. 

2. f is an almost GN−precontinuous. 

3. f is weakly GN−precontinuous. 

4. f is GN−precontinuous. 

5. f is strongly θ−GN−precontinuous. 

4. Conclusion 

The applications of GN−precontinuous functions is verey important in the area of mathematics, 

computer sciences and other areas. The notions in this article have been developed for the last notions 

in a grill topological space by giving a new concept. Moreover, they will play a significant role in 

solving some mathematical problems. We suggest to study notions of θ−GN−disconnected sets, 

θ−GN−connected, θ−GN−precompact sets, and separation axioms. 
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