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Abstract: The condition of cutting tools plays a crucial role in machining operations, 

impacting productivity, quality, and cost-effectiveness. This study aimed to develop 

an intelligent tool condition monitoring system using a Support Vector Machine to 

estimate the tool wear of cutting tools. This research aimed to address the challenges 

faced by industries in effectively monitoring and predicting tool conditions, enabling 

proactive maintenance strategies and optimising machining processes. Vibration 

signals were acquired using accelerometers connected to an OneproD MVP-200 

analyser during machining. Feature extraction involved identifying the relevant 

feature from the vibration signals, specifically the Root Mean Square (RMS) and 

Standard Deviation (Stdev), to capture patterns and characteristics indicative of tool 

wear. The SVM function in MATLAB was utilised to train a model using the 

extracted feature as input and surface finish as the label. The trained model was then 

used to estimate the tool wear of the cutting tool. The findings show that the RMS 

feature exhibited better accuracy compared to the stdev feature. Notably, the Gaussian 

SVM kernel achieved the highest accuracy of 83.07% for the RMS, surpassing the 

Linear (77.78%) and Polynomial (81.82%) SVM kernels.  
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1. Introduction 

Machine learning, a rapidly growing field of computing algorithms that aims to mimic human 

intelligence by learning from data, has found widespread applications across various industries  [1]. 

One area where machine learning techniques hold great potential is in tool condition monitoring for 

machining processes. By leveraging these techniques, it becomes possible to estimate tool wear and 

provide early warnings of tool failure. The monitoring and maintenance of cutting tool condition are 

crucial in manufacturing industries, as it directly impacts production efficiency, product quality, and 

the overall economics of machining operations. Traditional methods, such as manual inspection using 

tool maker's microscopes, are time-consuming, offline, and prone to errors. Online methods, such as 
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acoustic emission and temperature measurement, have their limitations, including signal attenuation 

and inaccuracies caused by thermal conductivity and heat dissipation. To address these challenges, this 

study aims to develop an intelligent tool condition monitoring system using a Support Vector Machine 

(SVM). This system aims to accurately estimate the tool wear of cutting tools by analysing vibration 

signals.  

2. Method 

This project focuses on using vibration sensor signals and a Support Vector Machine (SVM) for 

tool condition monitoring in the turning process. Vibration signals can provide valuable information 

about the condition of the cutting tool, including signs of wear and impending tool failure. SVM, a 

machine learning algorithm, is employed to analyse the vibration signals and predict the tool condition. 
The vibration signals are obtained by placing vibration sensors on the machine or cutting tool. These 

sensors detect the vibrations generated during the machining process, which can be influenced by 

factors such as tool wear, cutting parameters, and the material being machined. By analysing the 

patterns and characteristics of these vibration signals, it is possible to determine the condition of the 

cutting tool and make predictions about its remaining life. 

The materials and equipment used in this study included a carbon steel workpiece, a CNC turning 

machine (Harrison A400 Alpha), an accelerometer, a vibration analyser (OneproD MVP-200), a carbide 

insert (Kyocera Indexable Turning Insert), and a tool maker's microscope. These items were selected to 

facilitate the collection and analysis of data related to tool wear in machining processes. The carbon 

steel workpiece served as the substrate for the cutting operations, while the CNC turning machine 

provided the means to perform the machining tasks. The accelerometer was utilized to capture vibration 

signals during the machining process, and the vibration analyzer facilitated the analysis and 

interpretation of these signals. The carbide insert was the cutting tool used in the experiments, and the 

tool maker's microscope allowed for detailed inspection and measurement of the tool condition. 

Together, these materials and equipment formed the foundation for conducting the research and 

obtaining valuable insights into tool wear estimation. 

The experiment began by setting up the CNC turning machine, loading a carbon steel workpiece, 

and selecting the Kyocera Indexable Turning Insert TNMG332PSCA025P as the cutting tool. The 

workpiece was machined in three stages, while vibration signals were captured and measured using 

accelerometers connected to the OneproD MVP-200 analyser. The acquired signals underwent filtering, 

amplification, and feature extraction using MATLAB functions such as filter, fft, and pwelch. Machine 

learning techniques were then applied to develop an intelligent tool condition monitoring system. The 

extracted features were used in the decision-making process to estimate tool wear and make decisions 

about the cutting process. 

The experiment commenced by configuring the linear SVM model for tool condition monitoring. 

The chosen kernel functions included Linear, Gaussian, and Polynomial. The linear kernel was suitable 

for linearly separable classes and high-dimensional data, which aligns with the goal of classifying tool 

wear based on vibration signals. The Gaussian kernel was effective for capturing complex relationships 

in non-linearly separable data, while the polynomial kernel excelled in capturing polynomial 

relationships between features. The training process involved data preprocessing, model training, model 

tuning, and model evaluation using independent testing data. The dataset was split into a training set 

(80%) and a testing set (20%). The model's performance was assessed by evaluation metrics such as 

accuracy, precision, recall, and F1 score. These metrics provided valuable insights into the model's 

ability to classify different tool wear conditions accurately. 
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3. Results and Discussion 

This section presents the performance metrics achieved by the linear SVM model on the testing 

data, including accuracy. These metrics provide a quantitative assessment of the model's predictive 

capability for tool wear. The results are further analysed to gain insights into the significance of specific 

features, such as RMS and Stdev, in predicting tool wear. The performance of the linear SVM model is 

also compared across different kernel functions (Linear, Gaussian, and Polynomial) to evaluate its 

effectiveness in tool condition monitoring and prediction. This comprehensive evaluation aims to assess 

the efficacy of the linear SVM model in accurately monitoring and predicting tool conditions. 

The linear SVM model was trained and tested using a dataset specifically collected for tool 

condition monitoring and prediction. The dataset consisted of 500 instances, with 20% (100 instances) 

used as the testing set and the remaining 80% (400 instances) as the training set.  

Scatter plots were used to visualise the separation of Class 1 and Class 2 for both the RMS and 

Stdev features. As shown in Figure 1, the RMS scatter plot showed scattered points with partial 

separation between the two classes. Some class 2 points were mixed within the region primarily 

occupied by class 1, indicating potential misclassifications. This suggests that the RMS feature alone 

may not be sufficient for accurate classification despite capturing relevant signal power variations. 

 

Figure 1: Scatter Plot of RMS vs Tool Wear Values by a) Linear, b) Gaussian and c) Polynomial 

 

Confusion matrices were analysed for each kernel function (Linear, Gaussian, and Polynomial) to 

assess the classification accuracy. For the RMS feature, all three kernel functions demonstrated 

relatively accurate classification.  
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As shown in Figure 2, the confusion matrix presented the rows representing the true classes, while 

the columns represented the predicted classes. For the linear kernel function, there were 192 

observations of Class 1 correctly predicted as Class 1, and 8 observations misclassified as Class 2. 

 

Figure 2: Number of Observations for RMS Feature by a) Linear, b) Gaussian and c) Polynomial 

 

Similarly, for the Gaussian kernel function, there were 199 correct predictions of Class 1, with 1 

misclassification. In the case of the polynomial kernel function, there were 198 accurate predictions of 

Class 1 and 2 misclassifications. For Class 2, the linear kernel function had 42 misclassifications, while 

the Gaussian and polynomial kernel functions had 36 and 38 misclassifications, respectively. 

Additionally, all three kernel functions correctly predicted Class 2 in 158, 164, and 162 observations, 

respectively. 

As shown in Figure 3, the Stdev scatter plot showed a distinct distribution pattern, with a straight 

horizontal line separating points above and below it, representing class 2 and class 1, respectively. This 

indicated the potential of the stdev feature to contribute to the separation and classification of tool wear 

levels. However, the scatter plot of the Stdev feature displayed a scattered distribution of points without 

clear separation or distinct patterns between the two classes. This implies that the Stdev feature alone 

is not enough to classify the tool wear levels accurately. Additional features or more advanced 

classification techniques would be necessary to enhance the classification accuracy. 
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Figure 3 Scatter Plot of Stdev vs Tool Wear Values by a) Linear, b) Gaussian and c) Polynomial 

However, for the Stdev feature, there were misclassifications and less distinct patterns between the 

classes. This suggests that additional features or advanced techniques may be needed to improve the 

accuracy of classification. The analysis of support vectors provided insights into the model's accuracy 

and identified areas for potential improvement. 

 

Figure 4 Number of Observations for Stdev Feature by a) Linear, b) Gaussian and c) Polynomial 
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The confusion matrix in Figure 4 compared true class labels with predicted class labels. For the 

linear kernel function, 54 observations were correctly predicted as Class 1, while 146 observations of 

Class 1 were mispredicted as Class 2. Similarly, 24 observations of Class 2 were mispredicted as Class 

1, and 176 observations were correctly predicted as Class 2. For the Gaussian kernel function, 136 

observations were correctly predicted as Class 1, with 64 observations of Class 1 mispredicted as Class 

2. Likewise, 107 observations of Class 2 were mispredicted as Class 1, and 93 observations were 

correctly predicted as Class 2. For the polynomial kernel function, 128 observations were correctly 

predicted as Class 1, with 72 observations of Class 1 mispredicted as Class 2. Similarly, 125 

observations of Class 2 were mispredicted as Class 1, and 75 observations were correctly predicted as 

Class 2. 

Table 1 presents evaluation metrics for each kernel function in the context of tool condition 

monitoring. The linear kernel achieved an accuracy of 77.78% for the RMS feature, while the Gaussian 

kernel achieved the highest accuracy of 83.07%. The polynomial kernel achieved an accuracy of 

81.82%. Precision values for the RMS feature were 87.50% (linear), 90.75% (Gaussian), and 90.00% 

(polynomial). 

Table 1 Evaluation Metric for each Kernel Function 

Evaluation 

Metric 

Linear Gaussian Polynomial 

RMS Stdev RMS Stdev RMS Stdev 

Accuracy 77.78% 40.35% 83.07% 40.11% 81.82% 34.00% 

Precision 87.50% 57.50% 90.75% 57.25% 90.00% 50.75% 

Recall 87.50% 57.50% 90.75% 57.25% 90.00% 50.75% 

F1 Score 87.50% 57.50% 90.75% 57.25% 90.00% 50.75% 

           

Precision values for the Stdev feature were 57.50% (linear), 57.25% (Gaussian), and 50.75% 

(polynomial). Recall values were consistent, with 87.50% (linear, Gaussian, and polynomial) for the 

RMS feature and 57.50% (linear, Gaussian, and polynomial) for the Stdev feature. The F1 score was 

87.50% (linear, Gaussian, and polynomial) for the RMS feature and 57.50% (linear, Gaussian, and 

polynomial) for the Stdev feature. Overall, the Gaussian kernel outperformed other kernels in accuracy, 

precision, recall, and F1 score for both the RMS and Stdev features, aligning with findings from 

previous studies [2]. The Gaussian kernel is effective in capturing complex patterns and relationships 

in vibration signals. 

 

4. Conclusion 

The study successfully achieved its objectives by developing an intelligent tool condition 

monitoring system using Support Vector Machine (SVM) classification. SVM effectively classified the 

tool wear levels based on extracted features from vibration signals. The RMS feature performed better 

than the Stdev feature across all three kernel functions, with the Gaussian kernel achieving the highest 

accuracy, precision, recall, and F1 score (83.07%, 90.75%, 90.75%, and 90.75% respectively). 

Recommendations for future research include exploring additional feature extraction techniques, 

evaluating alternative machine learning models, implementing real-time monitoring, collaborating with 

industry partners, conducting long-term evaluation studies, and integrating with predictive maintenance 

strategies. Implementing these recommendations will advance the field of tool condition monitoring 

and improve productivity and decision-making in manufacturing processes. 
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