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Abstract: Vibration problems occur in many structural buildings and piping systems 

as a result of fluid flow. This is because fluid flow is an energy source that capable of 

generating structural and mechanical oscillations. The most accurate description to 

describe this interaction between the fluid's dynamic forces and elastic forces of a 

structure is flow-induced vibration. In these study, a flow-induced vibration of simply 

supported cantilever beam was investigated based on one-way fluid structure 

interaction (FSI). Ansys Workbench was used to simulate the dynamic behaviour of 

the beam when subjected to air flow. There are two beam angle positions analysed at 

60° and 90° vertically, where each beam was exposed to two different fluid flow rates 

of 10 and 15 m/s. Transient structural, modal analysis, harmonic analysis and fluid 

fluent were among the analyses used in the study. Simulation results show that the 

overall value of a 90° beam orientation in fluid pressure, velocity, total deformation, 

von-mises stress, and frequency response is higher than a 60° beam orientation. This 

shows that beam orientation significantly affects vibration level. Higher vibration 

levels also affect fluid flow speed and type. As the surface area of the beam struck by 

the fluid flow increases, so will the overall value of the beam's fluid pressure, velocity, 

total deformation, Von-Mises stress, and frequency response. In this case, the 90° 

beam orientation has more surface area where the fluid flow strikes than the 60° beam 

orientation. 
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1. Introduction 

Flow-induced vibrations, abbreviated as FIV, are the dynamic behavior of structures immersed in 

or conveying fluid flow. Fluid flow is a source of energy that can cause structural and mechanical 

oscillations. Flow-induced vibrations are the most accurate depiction of the interaction of a fluid's 

dynamic forces with a structure's inertial, damping, and elastic forces. It can happen in a structural 
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building or in high-speed turbulent fluid pipe configurations. Flow-induced vibration occurs and affects 

a wide range of engineering applications, including bridge decks and skyscrapers. 

A cantilever beam is a rigid structural element that is supported at one end and has free ends. The 

cantilever beam can be made of either concrete or steel, with one end attached to a vertical support. A 

variety of engineering applications use this basic mechanical structure. The cantilever beam deflects 

because it is supported on just one end. The primary focus of this research is on the simulation analysis 

of one-way fluid-structure interaction and the effect of different fluid flow velocities on the angle 

placement of a simply supported cantilever beam. 

2. Materials and Methods 

Methodology is a section that describes the stages of work that must be completed or used to complete 

a project or research in order to collect the necessary data. 

2.1 Materials 

Aluminum Alloy was chosen as the beam material for this study. The materials' specifications 

and properties are depicted in the table below. 

Table 1: Properties material of aluminum alloy 
 

Specification SI/Metric Unit 

Density 2770 kg/𝑚3 

Young’s Modulus 7.1 × 107 Pa 

Poisson ratio 0.33 

Bulk Modulus 6.9608 × 1010 Pa 

Shear Modulus 2.6692 × 1010 Pa 

 

2.2 Models Preparation 

Procedures can be described using flowcharts and algorithms. Include the appropriate references to 

standards. Authors can also explain the scope and limitations of the methods. 

 

Figure 2: Overall configuration for 90° beam orientation in an enclosure
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Figure 3: Overall configuration for 60° beam orientation in an enclosure 

 

2.3 Ansys Simulation 

Four tools were used to conduct the analysis in Ansys simulation: Transient Structural Analysis, 

Fluent Analysis, System Coupling Analysis, and Modal Analysis. All of these analyses were carried 

out in order to meet the study's objectives. The four major types of measurement systems used to achieve 

results are depicted in Figure 4. 

 

Figure 4: Four major types of measurement systems 

 

3. Results and Discussion 

3.1 Results 

The table below summarizes the fluid pressure, velocity, total deformation, and Von-Mises stress for 

both beam orientations and speeds. The frequency response for both beam orientations at both speeds 

is depicted in the figure 4 and 5. 
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Table 1: Fluid pressure comparison for both beam orientation and speed 

Beam Orientation Maximum pressure of fluid (Pa) Minimum pressure of fluid 

(Pa) 

10 m/s 15 m/s 10 m/s 15 m/s 

90° 7.409e+01 1.456e+02 -4.002e+02 -8.757e+02 

60° 7.277e+01 1.607e+02 -3.562e+02 -7.642e+02 

 

Table 2: Velocity Comparison both beam orientation and speed 
 

Beam Orientation Maximum velocity of fluid (m/s) Minimum velocity of fluid 

(m/s) 

10 m/s 15 m/s 10 m/s 15 m/s 

90° 2.118e+01 3.095e+01 0.000e+00 0.000e+00 

60° 2.006e+01 2.953e+01 0.000e+00 0.000e+00 

 

Table 3: Total deformation comparison for both beam and orientation 
 

Beam Orientation Maximum deformation (m) 

10 m/s 15 m/s 

90° 6.8674 15.451 

60° 6.7449 14.888 

Table 4: Von-Mises comparison for both beam orientation and speed 
 

Beam Orientation Maximum stress (Pa) Minimum stress (Pa) 

10 m/s 15 m/s 10 m/s 15 m/s 

90° 6.2858 14.165 0.00036595 0.00093544 

60° 6.1582 13.612 0.00040347 0.0010649 
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Figure 4: Frequency Response comparison for 60° and 90° for speed 10 m/s 

 

 
 

Figure 5: Frequency Response comparison for 60° and 90° for speed 15 m/s 
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3.2 Discussions 

According to the table and figure above, 90° beam orientation has higher values for fluid pressure, 

velocity, total deformation, Von-Mises stress, and frequency response than 60° beam orientation for 

both fluid flow speed. This demonstrates that the value of surface area in contact with fluid flow is more 

likely to result in a higher vibration value. 

 

4. Conclusion 

According to result of the research, the 90° beam orientation has a higher rate of pressure dispersion 

than the 60° beam orientation. Furthermore, the total deformation under 90° beam orientation is greater 

than under 60° beam orientation due to orientation differences. This study's frequency response of the 

vibration level on the beam surface is in the frequency domain. The vibration level is significantly 

higher in the 90° beam orientation condition than in the 60° beam orientation condition, as can be seen. 

In a nutshell, these studies show that the fluid structure interaction of the beam is affected by its 90° 

and 60° orientations. 
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