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Abstract: Stream flow forecasting is essential in resources planning and flood 

response. However, it is a challenge to generate an accurate forecast. In this study, 

time series models, ARIMA, ARMA and SARIMA are adopted to develop forecast 

series of two stations, Temerloh and Lubok Paku of Pahang River. SARIMA was 

chosen as the best forecasting model. SARIMA  (2,0,3)(0,1,0)12 for Temerloh 

generated forecast series with MAPE of 18.35 % which indicative of good accuracy 

modelling. Besides, SARIMA  (0,0,0)(1,1,2)12  for Lubok Paku demonstrated its 

MAPE values of 6.54 % which characterized the model as high accuracy. The ability 

of SARIMA deal with the seasonality of streamflow had increased the precision of 

forecasting. Besides, ARMA models revealed a lower MAPE values than ARIMA 

model due to the over-differencing of ARIMA model that lower its accuracy. 
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1. Introduction 

Streamflow forecasting is defined as the prediction of the water amount discharged on a certain 

waterway during specific period of time [1]. There is a need for hydrologists to achieve an accurate 

forecasting and modelling of river flow as a it is essential in effective allotment and management of 

water resources at hydraulic structure. Streamflow is heavily influenced by climate, geographical 

environment and anthropogenic factors as well. The aims of this study are twofold. Firstly, to 

demonstrate the role of time series model in develop short-term river flow forecast model that based on 

historical observed data of River Pahang. Secondly, to compare performances of SARIMA, ARIMA 

and ARMA model in order to determine the best model for short-term prediction. Monthly streamflow 

data of River Pahang from January 2010 to September 2019 are applied to develop a short-term period 

forecast by using time series models, whereas the three-monthly streamflow from October 2019 to 

December 2019 were also collected to compare with the forecast series. The time series models are 

parsimonious with one input, which is the streamflow data that obtained from Department of Irrigation 

and Drainage Malaysia. 

 In this study, 2 stream flow stations along Pahang River were observed namely Temerloh and 

Lubok Paku station. Time series model, SARIMA, ARIMA and ARMA model are employed by using 
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statistical software, Minitab. The ARIMA models are denoted as (p,d,q) and it will be reduced to the 

ARMA (p,q) models [2].. Seasonal ARIMA model was denoted with the notation 

SARIMA(p,d,q)(P,D,Q)S. where (p, d, q) refers to a non-seasonal part of the model whereas the latter 

(P, D, Q) refers to seasonal part of the model with a seasonality term S. S refers to period of the 

seasonality. 

The nomenclature of parameters of time series model following: 

Table 1： Nomenclature 

Hyperparameters Definition 

p number of autoregressive terms (AR) 

d Degree of differencing 

q number of lagged forecast errors in the prediction equation (MA) 

The hyperparameters P, D and Q for SARIMA is analogous to seasonal moving average, autoregression 

and integration term respectively.  

 

2. Methodology 

The process for the time series modelling is described in a flowchart which shown in Figure 1. The 

fundamental four steps for time series modelling including model identification, parameter 

estimation, diagnostic checking and forecasting. 

 

Figure 1: Flow chart of time series modelling 

The discharge data from Department of Irrigation and Drainage Malaysia is plotted into graph for 

identification of data pattern. Next, Box-Cox transformation is required to be performed until the value 
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of λ (power transformation parameter) is equal to 1 to achieve stationary in variance. A time series may 

be unfixed in the mean, variance or both. Hence, differencing was used to remove linear trend. Next, 

the ACF and PACF graph should be observed for seasonality identification and hyperparameters 

identification.In order to determine the most suitable SARIMA, ARIMA and ARMA model, the 

comparison is made based on the value of p-value, mean squares (MS) and sum of square (SS). The 

three different time series model with the least MS, SS and p-value will be chosen as the best fitting 

model. A statistical performance evaluation measure, mean absolute percentage error (MAPE) is 

adopted. The forecasted results that obtained from modelling are compared with the observed value to 

compute the value of MAPE. The accuracy of MAPE was defined in terms of percentage error. Hence, 

the model with lowest MAPE value will be chosen as the best time series model with better 

performance. The formulas of MAPE will be shown as follow: 

MAPE (%) = 
1

𝑁
[

[𝑧𝑡
′−𝑥𝑡]

𝑥𝑡
]x 100 % 

3. Results and Discussion 

3.1 Data visualization  

According to Figure 2 and Figure 3, both graphs recorded the highest streamflow in January 2015. 

However, Lubok Paku station had experienced higher stream flow when compared to Temerloh station 

in January 2015. The flood events on 2014/ 2015 was one of the extreme flood incidents occurred [3]. 

Based on published report in 2016, the Municipal of Temerloh described this flood event as the longest 

period for flood inundation which lasted for 23 days (from 28 December 2014 to 15 January 2015) [4]. 

This disaster affected 7,052 households and 29,204 victims were required to be relocated. 

 

Figure 2: Time series plot of stream flow in Temerloh from January 2010 to September 2019 

 

Figure 3: Time series plot of stream flow in Lubok Paku from January 2010 to September 2019 
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Figure 4 and Figure 5 demonstrated the trend analysis plot for both stations. The best-fit linear trend 

is plotted to detect significant changes in stream discharge and to approximate the presence of trend. 

Visually assessment of Figure 4 and Figure 5 suggests that the plots exhibit non-stationarity behavior 

as the overall streamflow of Temerloh had dipped while Figure 5 presented the upward trend for Lubok 

Paku . A series with trend is non-stationary series as its mean and variance are vary over time span.   

 

Figure 4: Trend analysis plot for Temerloh station 

 

Figure 5: Trend analysis plot for Lubok Paku station 

3.2 Box-Cox transformation 

Based on the results of Box-Cox testing after transformation which shown in Figure 6 and Figure 

7, the plots are stationary to the variance since the rounded λ values were equal to 1 after the logarithmic 

transformation was performed. Thus, there was no any further transformation required for both stations. 

 

Figure 6: Box- Cox plot for Temerloh station (after stabilization of variance) 
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Figure 7: Box- Cox plot for Lubok Paku station (after stabilization of variance) 

3.3 Differencing 

3.3.1 Temerloh station 

According to Figure 4 and Figure 5, the analysis exhibited trend in the plot which was indicative of 

non-stationarity. Hence, they are required to be corrected through first non-seasonal differencing to 

remove trend. After the first differencing process, trend analysis plots of first differenced data for 

Temerloh and Lubok Paku stations were shown as Figure 8 and Figure 9. There were no signs of 

elevation or decreasing for trend and also appeared horizontal along the x-axis, hence no any further 

differencing was required as stationarity in mean was ascertained.  

 

  

  

 

 

 

 

Figure 8: Trend analysis of first difference data for Temerloh station 

 

Figure 9: Trend analysis of first difference data for Lubok Paku station 
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3.4 ACF and PACF 

3.4.1 Temerloh station 

3.4.1.1 Non-seasonal models 

The ACF and PACF of the series with first non-seasonal differenced data, d = 1 were plotted as 

Figure 10 and Figure 11. A rapid decay was observed for the transformed data as shown, which support 

the evident of reduction non-stationarity. Both ACF and PACF plots were damping out with presence 

of significant spike implied that the model can be constructed as a combination of both AR and MA 

processes. The PACF plot cutoff at the order of 3. Hence, the possible order of autoregressive is equal 

to 3 (p =3). Similar to PACF plot, the ACF plot also cut off at the order of 3, it can be concluded that 

the possible order of moving average is 3 (q= 3) as well.  

 

Figure 10: Autocorrelation function of differenced stream discharge data in Temerloh station 

 

Figure 11: Partial autocorrelation function of differenced stream discharge data in Temerloh station 

3.4.1.2 Seasonal model 

Figure 12 and Figure 13 indicated the plots of the ACF and PACF for the first seasonal differenced 

stream flow. ACF plot decayed fast with a sine wave (alternating curve with negative and positive sign) 

that converged to 0, so q = 0 whereas PACF plot dies down after lag 1 and hence suggesting that p = 1. 

For the seasonal parameter, spikes can be observed in the PACF plot at lags 12, whereas in the ACF 

plot, there were no significant spike at lag 12. Therefore, both of the PACF and ACF plots suggest the 

seasonal AR (1) and MA (0) term (P=1, Q=0). 
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Figure 12.: ACF plot for seasonal differencing of the first differenced data (Temerloh) 

 

Figure 13: PACF plot for seasonal differencing of the first differenced data (Temerloh) 

3.4.2 Lubok Paku station  

3.4.2.1 Non-seasonal models 

Figure 14 and Figure 15 had demonstrated ACF and PACF for the first differenced stream flow of 

Lubok Paku station. Both ACF plot and PACF plot dies down after lag 2 and hence suggesting a 

combination of ARMA model which indicated that q= 2 and p= 2 respectively. Both plots decay rapidly 

with a sine wave. The rough model was identified as MA (2) and AR (2). For ARIMA and SARIMA 

models, the d term is equal to one as first differencing was performed.  

 

Figure 14: Autocorrelation function of differenced stream discharge data in Lubok Paku station 
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Figure 15: Partial Autocorrelation function of differenced stream discharge datain Lubok Paku station 

4.4.2.2 Seasonal model 

Figure 16 and Figure 17 indicated the plots of the autocorrelation function (ACF) and the partial 

autocorrelation function (PACF) respectively for the first seasonal differenced in stream flow. The ACF 

plot while damped out with a sine wave while the PACF plot dies down after lag 2 and hence suggesting 

that Q= 0 and P= 1 respectively. 

 

Figure 16: ACF plot for seasonal differencing of the first differenced data (Lubok Paku) 

 

Figure 17: PACF plot for seasonal differencing of the first differenced data (Lubok Paku) 

3.5 ARIMA, ARMA and SARIMA model 

3.5.1 Temerloh station 

SARIMA (2,0,3)(0,1,0)12 revealed the lowest p-value which is equal to 0.001 as well as the lowest 

value for sum of square (SS) and mean square (MS) when compared to other models. The SS and MS 
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of this model were 16108397 and 153317 respectively. Besides that, among the ARMA model 

candidates, ARMA (3,1) model demonstrated the lowest p-value which is equal to 0.003 with a lower 

value for sum of square (SS) and mean square (MS) when compared to other models. The SS and MS 

of this model were 19363798 and 172891 respectively. ARIMA (3,1,1) model outperform its candidate 

models with least p-value, 0.002 and lower value for SS and MS, 18423378 and 165976.  

3.5.2 Lubok Paku station  

SARIMA(0,0,0)(1,1,0)12 model revealed the lowest p-value which is equal to zero as well as the 

lower value for sum of square (SS) and mean square (MS). The SS and MS of this model were 16186455 

and 153655 respectively. SARIMA (0,0,0)(1,1,0)12 model was consisted of non-seasonal ARIMA 

model (0,0,0). It was considered as a white noise model which is uncorrelated and the random variables 

are identically distributed with mean zero and constant variance [5], which satisfied all the criterion 

required for stationary condition. The ARMA model that superior to its model candidates was 

ARMA(1,2) model with p-value which equal to 0.017 as well as values of SS and MS of 19211144 and 

170010.  The ARIMA (0,1,1) model recorded the highest p-value of 0.025 when compared to ARMA 

and SARIMA model with values of SS and MS of 16472427 and 172214.  The mentioned model would 

be used to fit the time series regression of stream flow discharge of Lubok Paku station from January 

2010 to September 2019. 

3.6 Stream flow forecasting 

3.6.1 Temerloh station 

Based on Table 2, SARIMA model  (2,0,3)(0,1,0)12 depicted low value of error as its overall 

MAPE value is insignificant (less than 20 % deviation from the actual streamflow data) and also in 

good fit with the observed discharge data on Temerloh station. According to Table 3, a value of MAPE 

which less than 20 % as a good forecasting. This implies that models with a MAPE values within 20 % 

of the best model enter the model portfolio. For ARIMA (3,1,1) and ARMA (3,1) models, they both 

demonstrated the MAPE values that more than 50 %, which classified them as in accurate forecasting 

as shown as Table 3. Both ARIMA and ARMA models do not consist of seasonal part and hence fail to 

achieve stationary for seasonality of streamflow while stationarity is the main criterion of time series 

model which required to be adhered. Additionally, a visual plot of the comparative forecast performance 

for the best-fitted model SARIMA (2,0,3)(0,1,0)12  as shown as Figure 18. It showcased that the 

SARIMA generalised forecast series with slightly deviation from historical stream flow and are 

approximately identical as the forecast streamflow are tracking relatively closely to observed data.  

Table 2: Example of presenting data using a table 

Models MAPE (%) 

SARIMA (2,0,3)(0,1,0)12 

ARIMA (3,1,1) 

ARMA (3,1) 

18.35 

60.16 

50.88 

 

Table 3: Example of presenting data using a table [6] 

MAPE Evaluation 

MAPE ≤ 10% High accuracy forecasting 

10% < MAPE ≤ 20% Good forecasting 

20% < MAPE ≤ 50% Reasonable forecasting 

MAPE > 50% Inaccurate forecasting 
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Figure 18: Representative plots of observed and predicted stream flow 

 (Temerloh station) 

3.6.2 Lubok Paku station 

  Based on Table 4, SARIMA model  (0,0,0)(1,1,0)12 exhibited lowest value of error as its MAPE 

value less than 10 % which indicated the forecast series maintained a good concurrence with observed 

data on Lubok Paku. The MAPE that less than 10% is acts as an indicative of very precise prediction. 

ARIMA (0,1,1) model demonstrated the highest MAPE value of 46.26 % whereas the MAPE of ARMA 

(1,2) model is 22.49 %.  Similarity, this might due to the over-differencing of model and hence lower 

the precision of forecast model as Temerloh station. This can be supported remarkably by the best fitted 

model SARIMA model with MAPE value of  (0,0,0)(1,1,0)12 which did not exhibit differencing term 

in its non-seasonal part as well. Both ARIMA and ARMA models exhibited MAPE values within the 

range from 20 % to 50% and hence they were categorised as reasonable forecasting. A visual plot of 

the comparative forecast performance for the best-fitted model SARIMA model  (0,0,0)(1,1,0)12 was 

presented in Figure 19. It had showcased that the SARIMA and its deviation from historical actual 

stream flow are identical as the forecast streamflow are tracking relatively closely to observed data.  

Table 4: Example of presenting data using a table 

Models MAPE (%) 

SARIMA (0,0, O)(1,1,0)12 

ARIMA (0,1,1) 

ARMA (1,2) 

6.54 

46.26 

22.49 

 

 

 Figure 19: Representative plots of observed and predicted stream flow (Lubok Paku station) 

 



Yap and Musa, Recent Trends in Civil Engineering and Built Environment Vol. 1 No. 1 (2023) p. 331-341 
 

341 
 

4. Conclusion 

In conclusion, SARIMA models outperformed the remaining models which indicated the least 

MAPE values of 18.35 % and 6.54 % for Temerloh station and Lubok Paku station respectively. Both 

SARIMA models generate good forecasting with MAPE lower than 20 %. However, the ARMA models 

obtain a lower MAPE values than ARIMA models for both stations. This might imply the over-

differencing of models. The application of time series model should be verified by performing the 

modelling at varying time span (daily or annually). Besides, multivariate time series modelling which 

input with exogenous data (temperature and climate variables) also suggested as an attempt to improve 

accuracy of forecast. Besides, a hybrid forecasting that combines data-driven and process driven models 

is proposed to enhance the accuracy of SARIMA models too. For this study, there are some 

recommendations to improve the results of forecasted value of stream flow for River Pahang. The 

application of time series model should be verified by performing the modelling at varying time span 

such as daily or annually. Besides, multivariate time series modelling which input with various 

exogenous data including temperature and climate variables also proposed to be performed as an 

attempt to enhance the precision of forecast values. Notwithstanding, the results demonstrated that the 

accuracy of obtained forecast series is acceptable as the MAPE values of SARIMA model are less than 

20%, a hybrid forecasting that comprised of data-driven and process driven parameters to strengthen 

the efficiency of SARIMA models. 
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